ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary density waves rotating at a constant pattern speed $Omega_{rm P}$ would produce age gradients across spiral arms. We test whether such age gradients are present in M81 by deriving the recent star formation histories (SFHs) of 20 regions ar ound one of M81s grand-design spiral arms. For each region, we use resolved stellar populations to determine the SFH by modeling the observed color-magnitude diagram (CMD) constructed from archival Hubble Space Telescope (HST) F435W and F606W imaging. Although we should be able to detect systematic time delays in our spatially-resolved SFHs, we find no evidence of star formation propagation across the spiral arm. Our data therefore provide no convincing evidence for a stationary density wave with a single pattern speed in M81, and instead favor the scenario of kinematic spiral patterns that are likely driven by tidal interactions with the companion galaxies M82 and NGC 3077.
We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing $sim$60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3$<$R$<$20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33 and/or a merger.
We have obtained a deep 8-field XMM-Newton mosaic of M33 covering the galaxy out to the D$_{25}$ isophote and beyond to a limiting 0.2--4.5 keV unabsorbed flux of 5$times$10$^{-16}$ erg cm$^{-2}$ s$^{-1}$ (L${>}$4$times$10$^{34}$ erg s$^{-1}$ at the distance of M33). These data allow complete coverage of the galaxy with high sensitivity to soft sources such as diffuse hot gas and supernova remnants. Here we describe the methods we used to identify and characterize 1296 point sources in the 8 fields. We compare our resulting source catalog to the literature, note variable sources, construct hardness ratios, classify soft sources, analyze the source density profile, and measure the X-ray luminosity function. As a result of the large effective area of XMM-Newton below 1 keV, the survey contains many new soft X-ray sources. The radial source density profile and X-ray luminosity function for the sources suggests that only $sim$15% of the 391 bright sources with L${>}$3.6$times$10$^{35}$ erg s$^{-1}$ are likely to be associated with M33, and more than a third of these are known supernova remnants. The log(N)--log(S) distribution, when corrected for background contamination, is a relatively flat power-law with a differential index of 1.5, which suggests many of the other M33 sources may be high-mass X-ray binaries. Finally, we note the discovery of an interesting new transient X-ray source, which we are unable to classify.
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
Using Hubble Space Telescope (HST) photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form $dN/dM propto M^{-alpha}$. Our new, larger sample of M31 progenitors follows a distribution with $alpha = 4.4pm 0.4$, and the M33 sample follows a distribution with $alpha = 3.8^{+0.4}_{-0.5}$. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives $alpha = 4.2pm 0.3$. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function (IMF), which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix $alpha = 2.35$ and treat the maximum mass as a free parameter, we find $M_{max} sim 35-45M_{sun}$, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.
We have measured stellar photometry with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 mill ion resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, we measured photometry with simultaneous point spread function fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 milliarcsecond accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W~28, while in the crowded, high surface brightness bulge, the photometry reaches F475W~25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest resolution filters (WFC3/IR) providing color-magnitude diagrams that are up to 2.5 magnitudes deeper when compared with color-magnitude diagrams from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that largest sources of systematic error in the photometry are due to spatial variations in the point spread function models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.
Using resolved stellar photometry measured from archival HST imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae that took place in galaxies within 8 Mpc. We fit these color-ma gnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SNe. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SNe progenitor masses are <20 M_sun. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.
We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrou nding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source (ULX) in NGC 2403, which we associate with a 60 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
108 - J. Melbourne 2012
Using high spatial resolution HST WFC3 and ACS imaging of resolved stellar populations, we constrain the contribution of thermally-pulsing asymptotic giant branch (TP-AGB) stars and red helium burning (RHeB) stars to the 1.6 um near-infrared (NIR) lu minosities of 23 nearby galaxies. The TP-AGB phase contributes as much as 17% of the integrated F160W flux, even when the red giant branch is well populated. The RHeB population contribution can match or even exceed the TP-AGB contribution, providing as much as 21% of the integrated F160W light. The NIR mass-to-light (M/L) ratio should therefore be expected to vary significantly due to fluctuations in the star formation rate over timescales from 25 Myr to several Gyr. We compare our observational results to predictions based on optically derived star formation histories and stellar population synthesis (SPS) models, including models based on the Padova isochrones (used in popular SPS programs). The SPS models generally reproduce the expected numbers of TP-AGB stars in the sample. The same SPS models, however, give a larger discrepancy in the F160W flux contribution from the TP-AGB stars, over-predicting the flux by a weighted mean factor of 2.3 +/-0.8. This larger offset is driven by the prediction of modest numbers of high luminosity TP-AGB stars at young (<300 Myrs) ages. The best-fit SPS models simultaneously tend to under-predict the numbers and fluxes of stars on the RHeB sequence, typically by a factor of 2.0+/-0.6 for galaxies with significant numbers of RHeBs. Coincidentally, over-prediction of the TP-AGB and under-prediction of the RHeBs result in a NIR M/L ratio largely unchanged for a rapid star formation rate. However, the NIR-to-optical flux ratio of galaxies could be significantly smaller than AGB-rich models would predict, an outcome that has been observed in some intermediate redshift post-starburst galaxies. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا