ترغب بنشر مسار تعليمي؟ اضغط هنا

A Global Star Forming Episode in M31 2-4 Gyr Ago

46   0   0.0 ( 0 )
 نشر من قبل Benjamin F. Williams
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing $sim$60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3$<$R$<$20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33 and/or a merger.

قيم البحث

اقرأ أيضاً

The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with $10^4$-$10^7$ solar masses and radii of 5-100 parsecs, are the seeds of star formation. Highlighting the molecular ga s structure at such small scales in distant galaxies is observationally challenging. Only a handful of molecular clouds were reported in two extreme submillimetre galaxies at high redshift. Here we search for GMCs in a typical Milky Way progenitor at z = 1.036. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we mapped the CO(4-3) emission of this gravitationally lensed galaxy at high resolution, reading down to 30 parsecs, which is comparable to the resolution of CO observations of nearby galaxies. We identify 17 molecular clouds, characterized by masses, surface densities and supersonic turbulence all of which are 10-100 times higher than present-day analogues. These properties question the universality of GMCs and suggest that GMCs inherit their properties from ambient interstellar medium. The measured cloud gas masses are similar to the masses of stellar clumps seen in the galaxy in comparable numbers. This corroborates the formation of molecular clouds by fragmentation of distant turbulent galactic gas disks, which then turn into stellar clumps ubiquitously observed in galaxies at cosmic noon.
We present a CO(3-2) survey of selected regions in the M31 disc as part of the JCMT large programme, HARP and SCUBA-2 High-Resolution Terahertz Andromeda Galaxy Survey (HASHTAG). The 12 CO(3-2) fields in this survey cover a total area of 60 square ar cminutes, spanning a deprojected radial range of 2 - 14 kpc across the M31 disc. Combining these observations with existing IRAM 30m CO(1-0) observations and JCMT CO(3-2) maps of the nuclear region of M31, as well as dust temperature and star formation rate surface density maps, we are able to explore the radial distribution of the CO(3-2)/CO(1-0) integrated intensity ratio (R31) and its relationship with dust temperature and star formation. We find that the value of R31 between 2 - 9 kpc galactocentric radius is 0.14, significantly lower than what is seen in the nuclear ring at ~1 kpc (R31 ~ 0.8), only to rise again to 0.27 for the fields centred on the 10 kpc star forming ring. We also found that R31 is positively correlated with dust temperature, with Spearmans rank correlation coefficient $rho$ = 0.55. The correlation between star formation rate surface density and CO(3--2) intensity is much stronger than with CO(1-0), with $rho$ = 0.54 compared to -0.05, suggesting that the CO(3-2) line traces warmer and denser star forming gas better. We also find that R31 correlates well with star formation rate surface density, with $rho$ = 0.69.
Two decades of effort have been poured into both single-dish and interferometric millimeter-wave surveys of the sky to infer the volume density of dusty star-forming galaxies (DSFGs, with SFR>100M$_odot$ yr$^{-1}$) over cosmic time. Though obscured g alaxies dominate cosmic star-formation near its peak at $zsim2$, the contribution of such heavily obscured galaxies to cosmic star-formation is unknown beyond $zsim2.5$ in contrast to the well-studied population of Lyman-break galaxies (LBGs) studied through deep, space- and ground-based pencil beam surveys in the near-infrared. Unlocking the volume density of DSFGs beyond $z>3$, particularly within the first 1 Gyr after the Big Bang is critical to resolving key open questions about early Universe galaxy formation: (1) What is the integrated star-formation rate density of the Universe in the first few Gyr and how is it distributed among low-mass galaxies (e.g. Lyman-break galaxies) and high-mass galaxies (e.g. DSFGs and quasar host galaxies)? (2) How and where do the first massive galaxies assemble? (3) What can the most extreme DSFGs teach us about the mechanisms of dust production (e.g. supernovae, AGB stars, grain growth in the ISM) <1 Gyr after the Big Bang? We summarize the types of observations needed in the next decade to address these questions.
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological c ontext using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z=0 to z=7. We show that (proto)cluster galaxies are an important, and even dominant population at high redshift, as their expected contribution to the cosmic star-formation rate density rises (from 1% at z=0) to 20% at z=2 and 50% at z=10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z~10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the Universe; at z~5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z<~1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during Cosmic Noon, and their connection to reionization during Cosmic Dawn.
We present ESO/VLT FORS2 low resolution spectroscopy of red giant branch stars in three massive, intermediate age ($sim 1.7-2.3$ Gyr) star clusters in the Large Magellanic Cloud. We measure CH and CN index bands at 4300A, and 3883A, as well as [C/Fe] and [N/Fe] abundance ratios for 24, 21 and 12 member stars of NGC 1978, NGC 1651, NGC 1783, respectively. We find a significant intrinsic spread in CN in NGC 1978 and NGC 1651, a signal of multiple stellar populations (MPs) within the clusters. On the contrary, we report a null CN spread in NGC 1783 within our measurement precision. For NGC 1978, we separated the two populations in the CN distribution and we translated the CN spread into an internal N variation $Delta$[N/Fe]$=0.63pm0.49$ dex. For NGC 1651 and NGC 1783, we put upper limits on the N abundance variations of $Delta$[N/Fe]$leq 0.2, 0.4$ dex, respectively. The spectroscopic analysis confirms previous results from HST photometry, where NGC 1978 was found to host MPs in the form of N spreads, while slightly younger clusters (e.g. NGC 1783, $<$ 2 Gyr old) were not, within the limits of the uncertainties. It also confirms that intermediate age massive clusters show lower N abundance variations with respect to the ancient globular clusters, although this is in part due to the effect of the first dredge up at these stellar masses, as recently reported in the literature. We stress the importance of future studies to estimate the initial N abundance variations, free of stellar evolutionary mixing processes, by observing unevolved stars in young clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا