ترغب بنشر مسار تعليمي؟ اضغط هنا

When comet nuclei approach the Sun, the increasing energy flux through the surface layers leads to sublimation of the underlying ices and subsequent outgassing that promotes the observed emission of gas and dust. The ejection of dust requires that th e forces binding the dust particles to the comet nucleus must be overcome by the forces caused by the sublimation process. This relates to the question of how large the tensile strength of the overlying dust layer is. Homogeneous layers of micrometer-sized dust particles reach tensile strengths of typically $10^3$ to $10^4$ Pa. This exceeds by far the maximum sublimation pressure of water ice in comets. It is therefore unclear how cometary dust activity is driven. To solve this paradox, we used the model by Skorov and Blum (Icarus 221, 1-11, 2012), who assumed that cometesimals formed by gravitational instability of a cloud of dust and ice aggregates and calculated for the corresponding structure of comet nuclei tensile strength of the dust-aggregate layers on the order of 1 Pa. Here we present evidence that the emitted cometary dust particles are indeed aggregates with the right properties to fit the model by Skorov and Blum. Then we experimentally measure the tensile strengths of layers of laboratory dust aggregates and confirm the values derived by the model. To explain the comet activity driven by the evaporation of water ice, we derive a minimum size for the dust aggregates of $sim 1$ mm, in agreement with meteoroid observations and dust-agglomeration models in the solar nebula. Finally we conclude that cometesimals must have formed by gravitational instability, because all alternative formation models lead to higher tensile strengths of the surface layers.
Airless planetary bodies are covered by a dusty layer called regolith. The grain size of the regolith determines the temperature and the mechanical strength of the surface layers. Thus, knowledge of the grain size of planetary regolith helps to prepa re future landing and/or sample-return missions. In this work, we present a method to determine the grain size of planetary regolith by using remote measurements of the thermal inertia. We found that small bodies in the Solar System (diameter less than ~100 km) are covered by relatively coarse regolith grains with typical particle sizes in the millimeter to centimeter regime, whereas large objects possess very fine regolith with grain sizes between 10 and 100 micrometer.
In this work, we present a new model for the heat conductivity of porous dust layers in vacuum, based on an existing solution of the heat transfer equation of single spheres in contact. This model is capable of distinguishing between two different ty pes of dust layers: dust layers composed of single particles (simple model) and dust layers consisting of individual aggregates (complex model). Additionally, we describe laboratory experiments, which were used to measure the heat conductivity of porous dust layers, in order to test the model. We found that the model predictions are in an excellent agreement with the experimental results, if we include radiative heat transport in the model. This implies that radiation plays an important role for the heat transport in porous materials. Furthermore, the influence of this new model on the Hertz factor are demonstrated and the implications of this new model on the modeling of cometary activity are discussed. Finally, the limitations of this new model are critically reviewed.
Coagulation models assume a higher sticking threshold for micrometer-sized ice particles than for micrometer-sized silicate particles. However, in contrast to silicates, laboratory investigations of the collision properties of micrometer-sized ice pa rticles (in particular, of the most abundant water ice) have not been conducted yet. Thus, we used two different experimental methods to produce micrometer-sized water ice particles, i. e. by spraying water droplets into liquid nitrogen and by spraying water droplets into a cold nitrogen atmosphere. The mean particle radii of the ice particles produced with these experimental methods are $(1.49 pm 0.79) , mathrm{mu m}$ and $(1.45 pm 0.65) , mathrm{mu m}$. Ice aggregates composed of the micrometer-sized ice particles are highly porous (volume filling factor: $phi = 0.11 pm 0.01$) or rather compact (volume filling factor: $phi = 0.72 pm 0.04$), depending on the method of production. Furthermore, the critical rolling friction force of $F_{Roll,ice}=(114.8 pm 23.8) times 10^{-10}, mathrm{N}$ was measured for micrometer-sized ice particles, which exceeds the critical rolling friction force of micrometer-sized $mathrm{SiO_2}$ particles ($F_{Roll,SiO_2}=(12.1 pm 3.6) times 10^{-10}, mathrm{N}$). This result implies that the adhesive bonding between micrometer-sized ice particles is stronger than the bonding strength between $mathrm{SiO_2}$ particles. An estimation of the specific surface energy of micrometer-sized ice particles, derived from the measured critical rolling friction forces and the surface energy of micrometer-sized $mathrm{SiO_2}$ particles, results in $gamma_{ice} = 0.190 , mathrm{J , m^{-2}}$.
Our knowledge about the physical processes determining the activity of comets were mainly influenced by several extremely successful space missions, the predictions of theoretical models and the results of laboratory experiments. However, novel compu ter models should not be treated in isolation but should be based on experimental results. Therefore, a new experimental setup was constructed to investigate the temperature dependent sublimation properties of hexagonal water ice and the gas diffusion through a dry dust layer covering the ice surface. We show that this experimental setup is capable to reproduce known gas production rates of pure hexagonal water ice. The reduction of the gas production rate due to an additional dust layer on top of the ice surface was measured and compared to the results of another experimental setup in which the gas diffusion through dust layers at room temperature was investigated. We found that the relative permeability of the dust layer is inversely proportional to its thickness, which is also predicted by theoretical models. However, the measured absolute weakening of the gas flow was smaller than predicted by models. This lack of correspondence between model and experiment may be caused by an ill-determination of the boundary condition in the theoretical models, which further demonstrates the necessity of laboratory investigations. Furthermore, the impedance of the dust layer to the ice evaporation was found to be similar to the impedance at room temperature, which means that the temperature profile of the dust layer is not influencing the reduction of the gas production. Finally, we present the results of an extended investigation of the sublimation coefficient, which is an important factor for the description of the sublimation rate of water ice and, thus, an important value for thermophysical modeling of icy bodies in the solar system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا