ترغب بنشر مسار تعليمي؟ اضغط هنا

Comets formed in solar-nebula instabilities! -- An experimental and modeling attempt to relate the activity of comets to their formation process (corrigendum included)

49   0   0.0 ( 0 )
 نشر من قبل Bastian Gundlach
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When comet nuclei approach the Sun, the increasing energy flux through the surface layers leads to sublimation of the underlying ices and subsequent outgassing that promotes the observed emission of gas and dust. The ejection of dust requires that the forces binding the dust particles to the comet nucleus must be overcome by the forces caused by the sublimation process. This relates to the question of how large the tensile strength of the overlying dust layer is. Homogeneous layers of micrometer-sized dust particles reach tensile strengths of typically $10^3$ to $10^4$ Pa. This exceeds by far the maximum sublimation pressure of water ice in comets. It is therefore unclear how cometary dust activity is driven. To solve this paradox, we used the model by Skorov and Blum (Icarus 221, 1-11, 2012), who assumed that cometesimals formed by gravitational instability of a cloud of dust and ice aggregates and calculated for the corresponding structure of comet nuclei tensile strength of the dust-aggregate layers on the order of 1 Pa. Here we present evidence that the emitted cometary dust particles are indeed aggregates with the right properties to fit the model by Skorov and Blum. Then we experimentally measure the tensile strengths of layers of laboratory dust aggregates and confirm the values derived by the model. To explain the comet activity driven by the evaporation of water ice, we derive a minimum size for the dust aggregates of $sim 1$ mm, in agreement with meteoroid observations and dust-agglomeration models in the solar nebula. Finally we conclude that cometesimals must have formed by gravitational instability, because all alternative formation models lead to higher tensile strengths of the surface layers.

قيم البحث

اقرأ أيضاً

In 1977, while Apple II and Atari computers were being sold, a tiny dot was observed in an inconvenient orbit. The minor body 1977 UB, to be named (2060) Chiron, with an orbit between Saturn and Uranus, became the first Centaur, a new class of minor bodies orbiting roughly between Jupiter and Neptune. The observed overabundance of short-period comets lead to the downfall of the Oort Cloud as exclusive source of comets and to the rise of the need for a Trans-Neptunian comet belt. Centaurs were rapidly seen as the transition phase between Kuiper Belt Objects (KBOs), also known as Trans-Neptunian Objects (TNOs) and the Jupiter-Family Comets (JFCs). Since then, a lot more has been discovered about Centaurs: they can have cometary activity and outbursts, satellites, and even rings. Over the past four decades since the discovery of the first Centaur, rotation periods, surface colors, reflectivity spectra and albedos have been measured and analyzed. However, despite such a large number of studies and complementary techniques, the Centaur population remains a mystery as they are in so many ways different from the TNOs and even more so from the JFCs.
It has been suggested that the comet-like activity of Main Belt Comets are due to the sublimation of sub-surface water-ice that has been exposed as a result of their surfaces being impacted by m-sized bodies. We have examined the viability of this sc enario by simulating impacts between m-sized and km-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle as well as different target material and water-mass fraction. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depth of an impact crater is slightly larger than 10 m suggesting that if the activation of MBCs is due to the sublimation of sub-surface water-ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice-exposure occurs in the bottom and on the interior surface of impact craters as well as the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation providing more ice for sublimation. We present details of our simulations and discuss their results and implications.
Formation and evolution of water in the Solar System and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small So lar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply-deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with 2D turbulent mixing. We find that the radial outward increase of the H2O D/H ratio is shallower in the chemo-dynamical nebular model compared to the laminar model. This is related to more efficient de-fractionation of HDO via rapid gas-phase processes, as the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ~<2.5 AU, while for the 2D chemo-dynamical model this zone is larger, r ~<9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ~2.5-10 x 10-4, are achieved within ~2-6 AU and ~2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.
Remote investigations of the ancient solar system matter has been traditionally carried out through the observations of long-period (LP) comets that are less affected by solar irradiation than the short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the dataset is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by afrho values >3--4 higher than that of our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. Contrary to this, the coma of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, suggesting sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, teniouos tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.
We processed images taken with the Hubble Space Telescope (HST) to investigate any morphological features in the inner coma suggestive of a peculiar activity on the nucleus of the interstellar comet 2I/Borisov. The coma shows an evident elongation, i n the position angle (PA) ~0-180d direction, which appears related to the presence of a jet originating from a single active source on the nucleus. A counterpart of this jet directed towards PA ~10d was detected through analysis of the changes of the inner coma morphology on HST images taken in different dates and processed with different filters. These findings indicate that the nucleus is probably rotating with a spin axis projected near the plane of the sky and oriented at PA ~100d-280d, and that the active source is lying in a near-equatorial position. Subsequent observations of HST allowed us to determine the direction of the spin axis at RA=17h20m+/-15d and Dec = -35d+-10d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا