ترغب بنشر مسار تعليمي؟ اضغط هنا

Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostruc tures are investigated in the subsystem level, as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.
We show that the emergence of different surface patterns (ripples, dots) can be well understood by a suitable mapping onto the simplest nonequilibrium lattice gases and cellular automata.Using this efficient approach difficult, unanswered questions o f surface growth and its scaling can be studied. The mapping onto binary variables facilitates effective simulations and enables one to consider very large system sizes.We have confirmed that the fundamental Kardar-Parisi-Zhang (KPZ) universality class is stable against a competing roughening diffusion,while a strong smoothing diffusion leads to logarithmic growth, a mean-field type behavior in two dimensions.The model can also describe anisotropic surface diffusion processes effectively. By analyzing the time-dependent structure factor we give numerical estimates for the wavelength coarsening behavior.
We extend our 2+1 dimensional discrete growth model (PRE 79, 021125 (2009)) with conserved, local exchange dynamics of octahedra, describing surface diffusion. A roughening process was realized by uphill diffusion and curvature dependence. By mapping the slopes onto particles two-dimensional, nonequilibrium binary lattice model emerge, in which the (smoothing/roughening) surface diffusion can be described by attracting or repelling motion of oriented dimers. The binary representation allows simulations on very large size and time scales. We provide numerical evidence for Mullins-Herring or molecular beam epitaxy class scaling of the surface width. The competition of inverse Mullins-Herring diffusion with a smoothing deposition, which corresponds to a Kardar-Parisi-Zhang (KPZ) process generates different patterns: dots or ripples. We analyze numerically the scaling and wavelength growth behavior in these models. In particular we confirm by large size simulations that the KPZ type of scaling is stable against the addition of this surface diffusion, hence this is the asymptotic behavior of the Kuramoto-Sivashinsky equation as conjectured by field theory in two dimensions, but has been debated numerically. If very strong, normal surface diffusion is added to a KPZ process we observe smooth surfaces with logarithmic growth, which can describe the mean-field behavior of the strong-coupling KPZ class. We show that ripple coarsening occurs if parallel surface currents are present, otherwise logarithmic behavior emerges.
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. Thi s facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we cant support his predictions for (3+1)d numerically.
We show that a 2+1 dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional conserved lattice gas model of directed dimers. In case of KPZ height anisotropy the dimers follow dr iven diffusive motion. We confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of the 2+1 dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-diffusion models, which allow much more efficient computer simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا