ترغب بنشر مسار تعليمي؟ اضغط هنا

In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed information loss paradox. Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the non-thermal spectrum of Parikh and Wilczek. Thus the information loss paradox can be falsified through experiments by detecting correlations, for instance, through measuring the covariances of Hawking radiations from black holes, such as the manmade ones speculated to appear in LHC experiments. The affirmation of information conservation in Hawking radiation will shine new light on the unification of gravity with quantum mechanics.
Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exa ct thermality when back reaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black hole, contrasting the differences between the nonthermal and thermal spectra. Of great interest, we find that the energy covariances of Hawking radiations for the thermal spectrum are exactly zero, while the energy covariances are non-trivial for the nonthermal spectrum. Consequently, the nonthermal spectrum can be distinguished from the thermal one by counting the energy covariances of successive emissions, which provides an avenue towards experimentally testing the long-standing information loss paradox.
A recent article by Mathur attempts a precise formulation for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outsi de of the horizon and their associated entropy gain or information loss during black hole evaporation, is a presumptuous false outcome not backed by the very foundation of physics. The very foundation of Mathurs above work is thus incorrect. We further show that within the framework of Hawking radiation as tunneling the so-called small corrections are sufficient to resolve the information loss problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا