ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios sys tem and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve I equation.
Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection points of plane quadrics, cubics and space algebraic curves are governed, in particular, by the dKP, WDVV, dVN, d2DTL equations and other integrable hydrodynamical type systems. Particular attention is paid to the study of two- and three-dimensional deformations of elliptic curves. Problem of an appropriate choice of Poisson structure is discussed.
131 - B.G.Konopelchenko 2009
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.
153 - B.G.Konopelchenko 2009
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformation Driving Algebra and governed by the central system of equations. It is demonstrated that many discrete equations like discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful.An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
197 - B.G.Konopelchenko 2008
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations are presented. It is shown that the theory of the Darboux transformations, at least for the BSQ case, is completely incorporated into the proposed scheme of deformations.
136 - B.G.Konopelchenko 2008
Discrete and q-difference deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by a central system of discrete or q-difference equations which in particular cases represent discrete and q-differenc
155 - B.G.Konopelchenko 2008
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curva ture tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the oriented associativity equation and, in particular, by the WDVV equation. It is demonstrated that a wider class of weakly (non)associative quantum deformations is connected with the integrable soliton equations too. In particular, such deformations for the three-dimensional and infinite-dimensional algebras are described by the Boussinesq equation and KP hierarchy, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا