ترغب بنشر مسار تعليمي؟ اضغط هنا

We report two new dramatically dusty main sequence stars: HD 131488 (A1V) and HD 121191 (A8V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (L_IR/L_bol~4x10^-3), cooler dust further out in its planetary system , and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (L_IR/L_bol~2.3x10^-3), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius-Centaurus OB association and have ages of ~10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5-20 Myr.
Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet f ormation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution is typically ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.
Because of proximity to the Galactic plane, reliable identification of members of the alpha Persei cluster is often problematic. Based primarily on membership evaluations contained in six published papers, we constructed a mostly complete list of hig h-fidelity members of spectral type G and earlier that lie within 3 arc degrees of the cluster center. Alpha Persei was the one nearby, rich, young open cluster not surveyed with the Spitzer Space Telescope. We examined the first and final data releases of the Wide Field Infrared Survey Explorer (WISE) and found 11, or perhaps 12, alpha Per cluster members that have excess mid-infrared emission above the stellar photosphere attributable to an orbiting dusty debris disk. The most unusual of these is V488 Per, a K-type star with an excess IR luminosity 16% (or more) of the stellar luminosity; this is a larger excess fraction than that of any other known dusty main sequence star. Much of the dust that orbits V488 Per is at a temperature of ~800 K; if these grains radiate like blackbodies, then they lie only ~0.06 AU from the star. The dust is probably the aftermath of a collision of two planetary embryos or planets with small semimajor axes; such orbital radii are similar to those of many of the transiting planets discovered by the Kepler satellite.
We propose 35 star systems within ~70 pc of Earth as newly identified members of nearby young stellar kinematic groups; these identifications include the first A- and late-B type members of the AB Doradus moving group and field Argus Association. All but one of the 35 systems contain a bright solar- or earlier-type star that should make an excellent target for the next generation of adaptive optics (AO) imaging systems on large telescopes. AO imaging has revealed four massive planets in orbit around the {lambda} Boo star HR 8799. Initially the planets were of uncertain mass due in large part to the uncertain age of the star. We find that HR 8799 is a likely member of the ~30 Myr old Columba Association implying planet masses ~6 times that of Jupiter. We consider Spitzer Space Telescope MIPS photometry of stars in the ~30 Myr old Tucana/Horologium and Columba Associations, the ~40 Myr old field Argus Association, and the ~70 Myr old AB Doradus moving group. The percentage of stars in these young stellar groups that display excess emission above the stellar photosphere at 24 and 70 mu m wavelengths - indicative of the presence of a dusty debris disk - is compared with corresponding percentages for members of 11 open clusters and stellar associations with ages between 8 and 750 Myr, thus elucidating the decay of debris disks with time.
High-contrast near-infrared imaging of the nearby star HR 8799 has shown three giant planets. Such images were possible due to the wide orbits (> 25 AU) and youth (< 100 Myr) of the imaged planets, which are still hot and bright as they radiate away gravitational energy acquired during their formation. A major area of contention in the extrasolar planet community is whether outer planets (> 10 AU) more massive than Jupiter form via one-step gravitational instabilities or, rather, via a two-step process involving accretion of a core followed by accumulation of a massive outer envelope composed primarily of hydrogen and helium. Here we report the presence of a fourth planet, interior to and about the same mass as the other three. The system, with this additional planet, represents a challenge for current planet formation models as none of them can explain the in situ formation of all four planets. With its four young giant planets and known cold/warm debris belts, the HR 8799 planetary system is a unique laboratory to study the formation and evolution of giant planets at wide > 10 AU separations.
106 - C. Melis 2010
From optical spectroscopic measurements we determine that the HD 15407 binary system is ~80 Myr old. The primary, HD 15407A (spectral type F5V), exhibits strong mid-infrared excess emission indicative of a recent catastrophic collision between rocky planetary embryos or planets in its inner planetary system. Synthesis of all known stars with large quantities of dust in their terrestrial planet zone indicates that for stars of roughly Solar mass this warm dust phenomenon occurs at ages between 30 and 100 Myr. In contrast, for stars of a few Solar masses, the dominant era of the final assembling of rocky planets occurs earlier, between 10 and 30 Myr age. The incidence of the warm dust phenomenon, when compared against models for the formation of rocky terrestrial-like bodies, implies that rocky planet formation in the terrestrial planet zone around Sun-like stars is common.
67 - C. Melis 2009
We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy we are able to determine that these two stars are $sim$1 Gyr old and reside at a distance of $sim$550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or sub-stellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.
We report the results of a mm-wave molecular line survey of the nearby (D ~ 70 pc), 12 Myr-old system V4046 Sgr -- a tight (9 R_sun separation), short-period (2.42 day) binary with nearly equal component masses of ~0.9 M_sun -- conducted with the 30 m telescope of the Institut de Radio Astronomie Millimetrique (IRAM). We detected rotational transitions of 12CO 13CO, HCN, CN, and HCO+. The double-peaked CO line profiles of V4046 Sgr are well fit by a model invoking a Keplerian disk with outer radius of ~250 AU that is viewed at an inclination i = 35 degrees. We infer minimum disk gas and dust masses of ~13 and ~20 Earth masses from the V4046 Sgr CO line and submm continuum fluxes, respectively. The actual disk gas mass could be much larger if the gas-phase CO is highly depleted and/or 13CO is very optically thick. The overall similarity of the circumbinary disk of V4046 Sgr to the disk orbiting the single, ~8 Myr-old star TW Hya -- a star/disk system often regarded as representative of the early solar nebula -- indicates that gas giant planets are likely commonplace among close binary star systems. Given the relatively advanced age and proximity of V4046 Sgr, these results provide strong motivation for future high-resolution imaging designed to ascertain whether a planetary system now orbits its twin suns.
Only a few solar-type main sequence stars are known to be orbited by warm dust particles; the most extreme is the G0 field star BD+20 307 that emits ~4% of its energy at mid-infrared wavelengths. We report the identification of a similarly dusty star HD 23514, an F6-type member of the Pleiades cluster. A strong mid-IR silicate emission feature indicates the presence of small warm dust particles, but with the primary flux density peak at the non-standard wavelength of ~9 micron. The existence of so much dust within an AU or so of these stars is not easily accounted for given the very brief lifetime in orbit of small particles. The apparent absence of very hot (>~1000 K) dust at both stars suggests the possible presence of a planet closer to the stars than the dust. The observed frequency of the BD+20 307/HD 23514 phenomenon indicates that the mass equivalent of Earths Moon must be converted, via collisions of massive bodies, to tiny dust particles that find their way to the terrestrial planet zone during the first few hundred million years of the life of many (most?) sun-like stars. Identification of these two dusty systems among youthful nearby solar-type stars suggests that terrestrial planet formation is common.
We have carried out a multiwavelength observational campaign demonstrating some of the remarkable properties of the infrared-bright variable star BP Psc. Surrounded by a compact dusty, gaseous disk, this little-studied late-G (or early-K) type star e mits about 75% of its detected energy flux at infrared wavelengths. Evidence for accretion of gas in conjunction with narrow bi-polar jets and Herbig-Haro objects is apparently consistent with classification of BP Psc as a pre-main sequence star, as postulated in most previous studies. If young, then BP Psc would be one of the nearest and oldest known classical T Tauri stars. However, such an evolutionary classification encounters various problems that are absent or much less severe if BP Psc is instead a luminosity class III post-main sequence star. In this case, it would be the first known example of a first ascent giant surrounded by a massive molecular disk with accompanying rapid gas accretion and prominent jets and HH objects. In this model, the genesis of the massive dusty gaseous disk could be a consequence of the envelopment of a low mass companion star. Properties in the disk may be conducive to the current formation of planets, a gigayear or more after the formation of BP Psc itself.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا