ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of the binary and physical parameters of a unique pulsating white dwarf with a main-sequence companion, SDSS J1136+0409, observed for more than 77 d during the first pointing of the extended Kepler mission: K2 Campaign 1. Using new ground-based spectroscopy, we show that this post-common-envelope binary has an orbital period of 6.89760103(60) hr, which is also seen in the photometry as a result of Doppler beaming and ellipsoidal variations of the secondary. We spectroscopically refine the temperature of the white dwarf to 12330(260) K and its mass to 0.601(36) Msun. We detect seven independent pulsation modes in the K2 light curve. A preliminary asteroseismic solution is in reasonable agreement with the spectroscopic atmospheric parameters. Three of the pulsation modes are clearly rotationally split multiplets, which we use to demonstrate that the white dwarf is not synchronously rotating with the orbital period but has a rotation period of 2.49(53) hr. This is faster than any known isolated white dwarf, but slower than almost all white dwarfs measured in non-magnetic cataclysmic variables, the likely future state of this binary.
We report on the search for new eclipsing white dwarf plus main-sequence (WDMS) binaries in the light curves of the Catalina surveys. We use a colour selected list of almost 2000 candidate WDMS systems from the Sloan Digital Sky Survey, specifically designed to identify WDMS systems with cool white dwarfs and/or early M type main-sequence stars. We identify a total of 17 eclipsing systems, 14 of which are new discoveries. We also find 3 candidate eclipsing systems, 2 main-sequence eclipsing binaries and 22 non-eclipsing close binaries. Our newly discovered systems generally have optical fluxes dominated by the main-sequence components, which have earlier spectral types than the majority of previously discovered eclipsing systems. We find a large number of ellipsoidally variable binaries with similar periods, near 4 hours, and spectral types M2--3, which are very close to Roche-lobe filling. We also find that the fraction of eclipsing systems is lower than found in previous studies and likely reflects a lower close binary fraction among WDMS binaries with early M-type main-sequence stars due to their enhanced angular momentum loss compared to fully convective late M type stars, hence causing them to become cataclysmic variables quicker and disappear from the WDMS sample. Our systems bring the total number of known detached, eclipsing WDMS binaries to 71.
We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective temperatures of the WDs. We observed a total of 26 systems using ULTRACAM mounted on ESOs 3.5m New Technology Telescope (NTT) at La Silla. Our photometric observations reveal pulsations in seven WDs of our sample, including the first pulsating white dwarf with a main-sequence companion in a post common envelope binary, SDSSJ1136+0409. Asteroseismology of these new pulsating systems will provide crucial insight into how binary interactions, particularly the common envelope phase, affect the internal structure and evolution of WDs. In addition, our observations have revealed the partially eclipsing nature of one of our targets, SDSSJ1223-0056.
155 - E. Breedt 2012
We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable H_alpha emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSSJ121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary, which was also recovered by our method.
Nonradial pulsations in the primary white dwarfs of cataclysmic variables can now potentially allow us to explore the stellar interior of these accretors using stellar seismology. In this context, we conducted a multi-site campaign on the accreting p ulsator SDSS J161033.64-010223.3 (V386 Ser) using seven observatories located around the world in May 2007 over a duration of 11 days. We report the best fit periodicities here, which were also previously observed in 2004, suggesting their underlying stability. Although we did not uncover a sufficient number of independent pulsation modes for a unique seismological fit, our campaign revealed that the dominant pulsation mode at 609s is an evenly spaced triplet. The even nature of the triplet is suggestive of rotational splitting, implying an enigmatic rotation period of about 4.8 days. There are two viable alternatives assuming the triplet is real: either the period of 4.8 days is representative of the rotation period of the entire star with implications for the angular momentum evolution of these systems, or it is perhaps an indication of differential rotation with a fast rotating exterior and slow rotation deeper in the star. Investigating the possibility that a changing period could mimic a triplet suggests that this scenario is improbable, but not impossible. Using time-series spectra acquired in May 2009, we determine the orbital period of SDSS J161033.64-010223.3 to be 83.8 +/- 2.9 min. Three of the observed photometric frequencies from our May 2007 campaign appear to be linear combinations of the 609s pulsation mode with the first harmonic of the orbital period at 41.5min. This is the first discovery of a linear combination between nonradial pulsation and orbital motion for a variable white dwarf.
The Sloan Digital Sky Survey has identified a total of 212 cataclysmic variables, most of which are fainter than 18th magnitude. This is the deepest and most populous homogeneous sample of cataclysmic variables to date, and we are undertaking a proje ct to characterise this population. We have found that the SDSS sample is dominated by a great ``silent majority of old and faint CVs. We detect, for the first time, a population spike at the minimum period of 80 minutes which has been predicted by theoretical studies for over a decade.
86 - John Southworth 2008
We present VLT and Magellan spectroscopy and NTT photometry of nine faint cataclysmic variables (CVs) which were spectroscopically identified by the SDSS. We measure orbital periods for five of these from the velocity variations of the cores and wing s of their Halpha emission lines. Four of the five have orbital periods shorter than the 2-3 hour period gap observed in the known population of CVs. SDSS J004335.14-003729.8 has an orbital period of Porb = 82.325 +/- 0.088 min; Doppler maps show emission from the accretion disc, bright spot and the irradiated inner face of the secondary star. In its light curve we find a periodicity which may be attributable to pulsations of the white dwarf. SDSS J163722.21-001957.1 has Porb = 99.75 +/- 0.86 min. By combining this new measurement with a published superhump period we estimate a mass ratio of 0.16 and infer the physical properties and orbital inclination of the system. For SDSS J164248.52+134751.4 we find Porb = 113.60 +/- 1.5 min. The Doppler map of this CV shows an unusual brightness distribution in the accretion disc which would benefit from further observations. SDSS J165837.70+184727.4 had spectroscopic characteristics which were very different between the SDSS spectrum and our own VLT observations, despite only a small change in brightness. We measure Porb = 98.012 +/- 0.065 min from its narrow Halpha emission line. Finally, SDSS J223843.84+010820.7 has a comparatively longer period of Porb = 194.30 +/- 0.16 min. It contains a magnetic white dwarf and, with g = 18.15, is brighter than the other objects studied here. These results continue the trend for the fainter CVs identified by the SDSS to be almost exclusively shorter-period objects with low mass transfer rates.
125 - John Southworth 2007
Continuing our work from Paper I (Southworth et al., 2006) we present medium-resolution spectroscopy and broad-band photometry of seven cataclysmic variables (CVs) discovered by the SDSS. For six of these objects we derive accurate orbital periods, a ll which are measured for the first time. For SDSS J013132.39+090122.2, which contains a non-radially pulsating white dwarf, we find an orbital period of 81.54 +/- 0.13 min and a low radial velocity variation amplitude indicative of an extreme mass ratio. For SDSS J205914.87+061220.4, we find a period of 107.52 +/- 0.14 min. This object is a dwarf nova and was fading from its first recorded outburst throughout our observations. INT photometry of SDSS J155531.99-001055.0 shows that this system undergoes total eclipses which are 1.5 mag deep and occur on a period of 113.54 +/- 0.03 min. A NOT light curve of SDSS J075443.01+500729.2 shows that this system is also eclipsing, on a period of 205.965 +/- 0.014 min, but here the eclipses are V-shaped and only 0.5 mag deep. Its low emission-line strengths, orbital period and V-shaped eclipse unambiguously mark it as a novalike object. WHT photometry of SDSS J005050.88+000912.6 and SDSS J210449.94+010545.8 yields periods of 80.3 +/- 2.2 and 103.62 +/- 0.12 min, respectively. Photometry of the seventh and final system, SDSS J165658.12+212139.3, shows only flickering. Our results strengthen the conclusion that the faint magnitude limit of the SDSS spectroscopic database implies that the sample of CVs contained in it has quite different characteristics to previously studied samples of these objects. Five of the six orbital periods measured here are shorter than the observed 2-3 hr CV period gap. Two systems have periods very close to the minimum orbital period for hydrogen-rich CVs.
67 - John Southworth 2007
KUV 23182+1007 was identified as a blue object in the Kiso UV Survey in the 1980s. Classification-dispersion spectroscopy showed a featureless continuum except for a strong emission line in the region of He II 4686 A. This is a hallmark of the rare A M CVn class of cataclysmic variable star, so we have obtained a high-S/N blue spectrum of this object to check its classification. Instead, the spectrum shows a strong quasar-like emission line centred on 4662 A. Comparison with the SDSS quasar template spectra confirms that KUV 23182+1007 is a quasar with a redshift of z = 0.665.
[Abridged] We present time-series optical photometry of five new CVs identified by the Hamburg Quasar Survey. The eclipses observed in HS 0129+2933, HS 0220+0603, and HS 0455+8315 provided very accurate orbital periods of 3.35129827(65), 3.58098501(3 4), and 3.56937674(26) h, respectively. HS 0805+3822 shows grazing eclipses and has a likely orbital period of 3.2169(2) h. Time-resolved optical spectroscopy of the new CVs (with the exception of HS 0805+3822) is also presented. Radial velocity studies provided an orbital period of 3.55 h for HS 1813+6122, which allowed us to identify the observed photometric signal at 3.39 h as a negative superhump wave. The spectroscopic behaviour clearly identifies these new CVs as new SW Sextantis stars. These new additions increase the number of known SW Sex stars to 35. Almost 40 per cent of the total SW Sex population do not show eclipses, invalidating the requirement of eclipses as a defining characteristic of the class and the models based on a high orbital inclination geometry alone. On the other hand, the predominance of orbital periods in the narrow 3-4.5 h range is becoming more pronounced. In fact, almost half the CVs which populate the 3-4.5 h period interval are definite members of the class. These statistics are confirmed by our results from the Hamburg Quasar Survey CVs. Remarkably, 54 per cent of the Hamburg nova-like variables have been identified as SW Sex stars with orbital periods in the 3-4.5 h range. The observation of this pile-up of systems close to the upper boundary of the period gap is difficult to reconcile with the standard theory of CV evolution, as the SW Sex stars are believed to have the highest mass transfer rates among CVs. Finally, we review the full range of common properties that the SW Sex stars exhibit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا