ترغب بنشر مسار تعليمي؟ اضغط هنا

The fainter the better: cataclysmic variable stars from the SDSS

46   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sloan Digital Sky Survey has identified a total of 212 cataclysmic variables, most of which are fainter than 18th magnitude. This is the deepest and most populous homogeneous sample of cataclysmic variables to date, and we are undertaking a project to characterise this population. We have found that the SDSS sample is dominated by a great ``silent majority of old and faint CVs. We detect, for the first time, a population spike at the minimum period of 80 minutes which has been predicted by theoretical studies for over a decade.

قيم البحث

اقرأ أيضاً

We present infrared JHK photometry of the cataclysmic variable SDSS J123813.73-033933.0 (SDSS1238)and analyze it along with optical spectroscopy, demonstrating that the binary system is most probably comprised of a massive white dwarf with Teff=12000 +/-1000 K and a brown dwarf of spectral type L4. The inferred system parameters suggest that this system may have evolved beyond the orbital period minimum and is a bounce-back system. SDSS1238 stands out among CVs by exhibiting the cyclical variability (brightenings). These are not related to specific orbital phases of the binary system and are fainter than dwarf novae outbursts, that usually occur on longer timescales. This phenomenon has not been observed extensively and, thus, is poor understood. The new time-resolved, multi-longitude photometric observations of SDSS1238 allowed us to observe two consecutive brightenings and to determine their recurrence time. The period analysis of all observed brightenings during 2007 suggests a typical timescale that is close to a period of ~9.3 hours. However, the brightenings modulation is not strictly periodic, possibly maintaining coherence only on timescales of several weeks. The characteristic variability with double orbital frequency that clearly shows up during brightenings is also analyzed. The Doppler mapping of the system shows the permanent presence of a spiral arm pattern in the accretion disk. A simple model is presented to demonstrate that spiral arms in the velocity map appear at the location and phase corresponding to the 2:1 resonance radius and constitute themselves as a double-humped light curves. The long-term and short-term variability of this CV is discussed together with the spiral arm structure of an accretion disk in the context of observational effects taking place in bounce-back systems.
The commissioning year of the Sloan Digital Sky Survey has demonstrated that many cataclysmic variables have been missed in previous surveys with brighter limits. We report the identification of 22 cataclysmic variables, of which 19 are new discoveri es and 3 are known systems (SW UMa, BH Lyn and Vir4). A compendium of positions, colors and characteristics of these systems obtained from the SDSS photometry and spectroscopy is presented along with data obtained during follow-up studies with the Apache Point Observatory (APO) and Manastash Ridge Observatory (MRO) telescopes. We have determined orbital periods for 3 of the new systems: two show dwarf nova outbursts, and the third is a likely magnetic system with eclipses of its region of line emission. Based on these results, we expect the completed survey to locate at least 400 new CVs. Most of these will be faint systems with low accretion rates that will provide new constraints on binary evolution models.
The first full year of operation following the commissioning year of the Sloan Digital Sky Survey has revealed a wide variety of newly discovered cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic variables observed in 2002, of which thirty-five are new classifications, four are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV identified from a previous quasar survey (Aqr1) and two are known ROSAT or FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS positions, colors and spectra of all forty-two systems are presented. In addition, the results of follow-up studies of several of these objects identify the orbital periods, velocity curves and polarization that provide the system geometry and accretion properties. While most of the SDSS discovered systems are faint (>18th mag) with low accretion rates (as implied from their spectral characteristics), there are also a few bright objects which may have escaped previous surveys due to changes in the mass transfer rate.
This paper continues the series that identifies new cataclysmic variables found in the Sloan Digital Sky Survey. We present 36 cataclysmic variables and one possible symbiotic star from Sloan spectra obtained during 2002, of which 34 are new discover ies, 2 are known dwarf novae (BC UMa, KS UMa) and one is a known CV identified from the 2dF survey. The positions, colors and spectra of all 37 systems are presented, along with follow-up spectroscopic/photometric observations of 10 systems. As in the past 2 years of data, the new SDSS systems show a large variety of characteristics based on their inclination and magnetic fields, including 3 eclipsing systems, 4 with prominent He II emission, and 15 systems showing features of the underlying stars.
We discuss a method for determination of the size of the emitting region close to the compact star in a binary system with eclipses by a secondary, which fills its Roche lobe. The often used approach is to model the Roche lobe by a sphere with the ef fective radius corresponding to the volume of the Roche lobe. This approach leads to a 4-6% overestimate of the radius, if taking into account the angular dimensions of the Roche lobe seen form the compact star. Andronov (1992) had shown that the projection of the Roche lobe onto the celestial sphere is close to an ellipse and had tabulated these dimensions as a function of the mass ratio. Also he published the coefficients of the approximation similar to that of the Eggleton (1983) for the sphere corresponding to the same volume. We compare results obtained for the circle+circle, ellipse+circle and ellipse+point approximations of the projections of the red dwarf and a white dwarf, respectively. Results are applied to the recently discovered eclipsing polar CSS 081231:071126+440405.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا