ترغب بنشر مسار تعليمي؟ اضغط هنا

By direct measurements of the complex optical conductivity $sigma( u)$ of FeSi we have discovered a broad absorption peak centered at frequency $ u_{0}(4.2 K) approx 32 cm^{-1}$ that develops at temperatures below 20 K. This feature is caused by spin -polaronic states formed in the middle of the gap in the electronic density of states. We observe the spin excitations between the electronic levels split by the exchange field of $H_{e}=34pm 6 T$. Spin fluctuations are identified as the main factor determining the formation of the spin polarons and the rich magnetic phase diagram of FeSi.
The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا