ترغب بنشر مسار تعليمي؟ اضغط هنا

63 - M. Vrard , B. Mosser , C. Barban 2015
The space-borne missions CoRoT and Kepler have provided a large amount of precise photometric data. Among the stars observed, red giants show a rich oscillation pattern that allows their precise characterization. Long-duration observations allow for investigating the fine structure of this oscillation pattern. A common pattern of oscillation frequency was observed in red giant stars, which corresponds to the second-order development of the asymptotic theory. This pattern, called the universal red giant oscillation pattern, describes the frequencies of stellar acoustic modes. We aim to investigate the deviations observed from this universal pattern, thereby characterizing them in terms of the location of the second ionization zone of helium. We also show how this seismic signature depends on stellar evolution. We measured the frequencies of radial modes with a maximum likelihood estimator method, then we identified a modulation corresponding to the departure from the universal oscillation pattern. We identify the modulation component of the radial mode frequency spacings in more than five hundred red giants. The variation in the modulation that we observe at different evolutionary states brings new constraints on the interior models for these stars. We also derive an updated form of the universal pattern that accounts for the modulation and provides highly precise radial frequencies.
The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data were selected to map various evolutionary stages and stellar masses. Seismic evolutionary tracks were then drawn with the combination of the frequency and period spacings. We measured the asymptotic period spacing for more than 1170 stars at various evolutionary stages. This allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. We present clear quantified asteroseismic definitions that characterize the change in the evolutionary stages, in particular the transition from the subgiant stage to the early red giant branch, and the end of the horizontal branch.The seismic information is so precise that clear conclusions can be drawn independently of evolution models. The quantitative seismic information can now be used for stellar modeling, especially for studying the energy transport in the helium-burning core or for specifying the inner properties of stars entering the red or asymptotic giant branches. Modeling will also allow us to study stars that are identified to be in the helium-subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secret s: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to emph{paparazze} the red giants according to the seismic pictures we have from their interiors.
211 - N. Ozel , B. Mosser , M.A. Dupret 2013
The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V star HD 175272. Our aim is to define a method for extrac ting as much information as possible from a noisy oscillation spectrum. We followed a differential approach that consists of using a well-known star as a reference to characterize another star. We used classical tools such as the envelope autocorrelation function to derive the global seismic parameters of the star. We compared HD 175272 with HD 181420 through a linear approach, because they appear to be asteroseismic twins. The comparison with the reference star enables us to substantially enhance the scientific output for HD 175272. First, we determined its global characteristics through a detailed seismic analysis of HD 181420. Second, with our differential approach, we measured the difference of mass, radius and age between HD 175272 and HD 181420. We have developed a general method able to derive asteroseismic constraints on a star even in case of low-quality data. %This method is based on the comparison to a star with common seismic and classical properties. Seismic data allow accurate measurements of radii and masses differences between the two stars. This method can be applied to stars with interesting properties but low signal-to-noise ratio oscillation spectrum, such as stars hosting an exoplanet or members of a binary system.
Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($Delta u$) and the mean density ($bar{rho}$) as well as the relation between the frequency of the maximum in the power spectrum of solar-like oscillations ($ u_{rm max}$) and the cut-off frequency ($ u_{rm c}$). For the first relation, we will consider the possible sources of uncertainties and explore them with the help of a grid of stellar models. For the second one, we will show that the basic physical picture is understood and that departure from the observed relation arises from the complexity of non-adiabatic processes involving time-dependent treatment of convection. This will be further discussed on the basis of a set of 3D hydrodynamical simulation of surface convection.
Asteroseismology with the space-borne missions CoRoT and Kepler provides a powerful mean of testing the modeling of transport processes in stars. Rotational splittings are currently measured for a large number of red giant stars and can provide strin gent constraints on the rotation profiles. The aim of this paper is to obtain a theoretical framework for understanding the properties of the observed rotational splittings of red giant stars with slowly rotating cores. This allows us to establish appropriate seismic diagnostics for rotation of these evolved stars. Rotational splittings for stochastically excited dipolar modes are computed adopting a first-order perturbative approach for two $1.3 M_odot$ benchmark models assuming slowly rotating cores. For red giant stars with slowly rotating cores, we show that the variation of the rotational splittings of $ell=1$ modes with frequency depends only on the large frequency separation, the g-mode period spacing, and the ratio of the average envelope to core rotation rates (${cal R}$). This leds us to propose a way to infer directly ${cal R}$ from the observations. This method is validated using the Kepler red giant star KIC 5356201. Finally, we provide a theoretical support for the use of a Lorentzian profile to measure the observed splittings for red giant stars.
The length of the asteroseismic timeseries obtained from the Kepler satellite analysed here span 19 months. Kepler provides the longest continuous timeseries currently available, which calls for a study of the influence of the increased timespan on t he accuracy and precision of the obtained results. We find that in general a minimum of the order of 400 day long timeseries are necessary to obtain reliable results for the global oscillation parameters in more than 95% of the stars, but this does depend on <dnu>. In a statistical sense the quoted uncertainties seem to provide a reasonable indication of the precision of the obtained results in short (50-day) runs, they do however seem to be overestimated for results of longer runs. Furthermore, the different definitions of the global parameters used in the different methods have non-negligible effects on the obtained values. Additionally, we show that there is a correlation between nu_max and the flux variance. We conclude that longer timeseries improve the likelihood to detect oscillations with automated codes (from ~60% in 50 day runs to > 95% in 400 day runs with a slight method dependence) and the precision of the obtained global oscillation parameters. The trends suggest that the improvement will continue for even longer timeseries than the 600 days considered here, with a reduction in the median absolute deviation of more than a factor of 10 for an increase in timespan from 50 to 2000 days (the currently foreseen length of the mission). This work shows that global parameters determined with high precision - thus from long datasets - using different definitions can be used to identify the evolutionary state of the stars. (abstract truncated)
Context: The Kepler space mission is reaching continuous observing times long enough to start studying the fine structure of the observed p-mode spectra. Aims: In this paper, we aim to study the signature of stellar evolution on the radial and p-domi nated l=2 modes in an ensemble of red giants that show solar-type oscillations. Results: We find that the phase shift of the central radial mode (eps_c) is significantly different for red giants at a given large frequency separation (Dnu_c) but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Dnu_c, eps_c) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between eps_c and Dnu_c for RGB stars and no indication that eps_c depends on other properties of these stars. It appears that the difference in eps_c between the two populations becomes if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, Dnu to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial modes for a sequence of RG models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Dnu is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Dnu. Finally, we investigate the signature of the evolutionary stage on the small frequency separation and quantify the mass dependency of this seismic parameter.
We report for the first time a parametric fit to the pattern of the ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes , we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of ell = 3 modes, of ell = 2 mixed modes, for the mode widths and amplitudes, and for the ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. We fit a global model to the observed frequency spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation. The seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our analysis allows us to determine reliable uncertainties for all parameters. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars metallicities on their positions in the H-R diagram. We study the red-giant populations in the red clump and bump and compare them to a synthetic population and find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا