ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar-like oscillations in red giants observed with textit{Kepler}: influence of increased timespan on global oscillation parameters

152   0   0.0 ( 0 )
 نشر من قبل Saskia Hekker
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The length of the asteroseismic timeseries obtained from the Kepler satellite analysed here span 19 months. Kepler provides the longest continuous timeseries currently available, which calls for a study of the influence of the increased timespan on the accuracy and precision of the obtained results. We find that in general a minimum of the order of 400 day long timeseries are necessary to obtain reliable results for the global oscillation parameters in more than 95% of the stars, but this does depend on <dnu>. In a statistical sense the quoted uncertainties seem to provide a reasonable indication of the precision of the obtained results in short (50-day) runs, they do however seem to be overestimated for results of longer runs. Furthermore, the different definitions of the global parameters used in the different methods have non-negligible effects on the obtained values. Additionally, we show that there is a correlation between nu_max and the flux variance. We conclude that longer timeseries improve the likelihood to detect oscillations with automated codes (from ~60% in 50 day runs to > 95% in 400 day runs with a slight method dependence) and the precision of the obtained global oscillation parameters. The trends suggest that the improvement will continue for even longer timeseries than the 600 days considered here, with a reduction in the median absolute deviation of more than a factor of 10 for an increase in timespan from 50 to 2000 days (the currently foreseen length of the mission). This work shows that global parameters determined with high precision - thus from long datasets - using different definitions can be used to identify the evolutionary state of the stars. (abstract truncated)

قيم البحث

اقرأ أيضاً

We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.
We present the results of the asteroseismic analysis of the red-giant star KIC 4351319 (TYC 3124-914-1), observed for 30 days in short-cadence mode with the Kepler satellite. The analysis has allowed us to determine the large and small frequency sepa rations, and the frequency of maximum oscillation power. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to 500 muHz. The observed oscillation frequencies together with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well defined solar-type p-modes pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch, is in the hydrogen-shell burning phase, with a mass of about 1.3 solar masses, a radius of about 3.4 solar radii and an age of about 5.6 Gyr. The main parameters of this star have been determined with an unprecedent level of precision for a red-giant star, with uncertainties of 2% for mass, 7% for age, 1% for radius, and 4% for luminosity.
We have studied solar-like oscillations in ~800 red-giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red-giant branch to the Helium main sequence. We investigate the relation between the large frequency separation (Delta nu) and the frequency of maximum power (nu_max) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of nu_max and Delta nu are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidence for a secondary clump population characterized by M ~> 2 M_sun and nu_max ~ 40-110 muHz. We measured the small frequency separations delta nu_02 and delta nu_01 in over 400 stars and delta nu_03 in over 40. We present C-D diagrams for l=1, 2 and 3 and show that the frequency separation ratios delta nu_02/Delta nu and delta nu_01/Delta nu have opposite trends as a function of Delta nu. The data show a narrowing of the l=1 ridge towards lower nu_max, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset epsilon in the asymptotic relation and find a clear correlation with Delta nu, demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-nu_max relation for Kepler red giants. We observe a lack of low-amplitude stars for nu_max ~> 110 muHz and find that, for a given nu_max between 40-110 muHz, stars with lower Delta nu (and consequently higher mass) tend to show lower amplitudes than stars with higher Delta nu.
We analysed solar-like oscillations in 1523 $textit{Kepler}$ red giants which have previously been misclassified as subgiants, with predicted $ u_{rm max}$ values (based on the Kepler Input Catalogue) between 280$mu$Hz to 700$mu$Hz. We report the dis covery of 626 new oscillating red giants in our sample, in addition to 897 oscillators that were previously characterized by Hekker et al. (2011) from one quarter of $textit{Kepler}$ data. Our sample increases the known number of oscillating low-luminosity red giants by $26%$ (up to $sim$ 1900 stars). About three quarters of our sample are classified as ascending red-giant-branch stars, while the remainder are red-clump stars. A novel scheme was applied to determine $Delta u$ for 108 stars with $ u_{rm max}$ close to the Nyquist frequency (240$mu$Hz < $ u_{rm max}$ < 320$mu$Hz). Additionally, we identified 47 stars oscillating in the super-Nyquist frequency regime, up to 387$mu$Hz, using long-cadence light curves. We show that the misclassifications are most likely due to large uncertainties in KIC surface gravities, and do not result from the absence of broadband colors or from different physical properties such as reddening, spatial distribution, mass or metallicity. The sample will be valuable to study oscillations in low-luminosity red giants and to characterize planet candidates around those stars.
We present the asteroseismic analysis of 1948 F-, G- and K-type main-sequence and subgiant stars observed by the NASA {em Kepler Mission}. We detect and characterise solar-like oscillations in 642 of these stars. This represents the largest cohort of main-sequence and subgiant solar-like oscillators observed to date. The photometric observations are analysed using the methods developed by nine independent research teams. The results are combined to validate the determined global asteroseismic parameters and calculate the relative precision by which the parameters can be obtained. We correlate the relative number of detected solar-like oscillators with stellar parameters from the {em Kepler Input Catalog} and find a deficiency for stars with effective temperatures in the range $5300 lesssim T_mathrm{eff} lesssim 5700$,K and a drop-off in detected oscillations in stars approaching the red edge of the classical instability strip. We compare the power-law relationships between the frequency of peak power, $ u_mathrm{max}$, the mean large frequency separation, $Delta u$, and the maximum mode amplitude, $A_mathrm{max}$, and show that there are significant method-dependent differences in the results obtained. This illustrates the need for multiple complementary analysis methods to be used to assess the robustness and reproducibility of results derived from global asteroseismic parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا