ترغب بنشر مسار تعليمي؟ اضغط هنا

The problem of a particle confined in a box with moving walls is studied, focusing on the case of small perturbations which do not alter the shape of the boundary (lq pantographyrq). The presence of resonant transitions involving the natural transiti on frequencies of the system and the Fourier transform of the velocity of the walls of the box is brought to the light. The special case of a pantographic change of a circular box is analyzed in dept, also bringing to light the fact that the movement of the boundary cannot affect the angular momentum of the particle.
Complete positivity of a class of maps generated by master equations derived beyond the secular approximation is discussed. The connection between such class of evolutions and physical properties of the system is analyzed in depth. It is also shown t hat under suitable hypotheses a Zeno dynamics can be induced because of the high temperature of the bath.
We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that ou r analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak di ssipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.
We exploit a microscopically derived master equation for the study of STIRAP in the presence of decay from the auxiliary level toward the initial and final state, and compare our results with the predictions obtained from a phenomenological model pre viously used [P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Phys. Rev. A 72, 053412 (2005)]. It is shown that our approach predicts a much higher efficiency. The effects of temperature are also taken into account, proving that in b-STIRAP thermal pumping can increase the efficiency of the population transfer.
A master equation approach to the study of environmental effects in the adiabatic population transfer in three-state systems is presented. A systematic comparison with the non-Hermitian Hamiltonian approach [N. V. Vitanov and S. Stenholm, Phys. Rev. A {bf 56}, 1463 (1997)] shows that in the weak coupling limit the two treatments lead to essentially the same results. Instead, in the strong damping limit the predictions are quite different: in particular the counterintuitive sequences in the STIRAP scheme turn out to be much more efficient than expected before. This point is explained in terms of quantum Zeno dynamics.
We provide a microscopic derivation for the non-Markovian master equation for an atom-cavity system with cavity losses and show that they can induce population trapping in the atomic excited state, when the environment outside the cavity has a non-fl at spectrum. Our results apply to hybrid solid state systems and can turn out to be helpful to find the most appropriate description of leakage in the recent developments of cavity quantum electrodynamics.
Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracte d asymptotically. Nevertheless, we find a way out of this difficulty by deriving an analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite number of measurements.
In population trapping the occupation of a decaying quantum level keeps a constant non-zero value. We show that an atom-cavity system interacting with an environment characterized by a non-flat spectrum, in the non-Markovian limit, exhibits such a be havior, effectively realizing the preservation of nonclassical states against dissipation. Our results allow to understand the role of cavity losses in hybrid solid state systems and pave the way to the proper description of leakage in the recently developed cavity quantum electrodynamic systems.
Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا