ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - Minjae Kim , B. I. Min 2015
We have investigated the temperature (T)-dependent evolution of electronic structures and magnetic properties of an itinerant ferromagnet SrRuO3, employing the combined scheme of the density functional theory and the dynamical mean-field theory (DFT+ DMFT). The inclusion of finite dynamical correlation effects beyond the DFT well describes not only the incoherent hump structure observed in the photoemission experiment but also the T-dependent magnetic properties in accordance with experiments. We have shown that the magnetization of SrRuO3 evolves with the Stoner behavior below the Curie temperature (Tc), reflecting the weak itinerant ferromagnetic behavior, but the local residual magnetic moment persists even above Tc, indicating the local magnetic moment behavior. We suggest that the ferromagnetism of SrRuO3 has dual nature of both weak and local moment limits, even though the magnetism of SrRuO3 is more itinerant than that of Fe.
Employing the recently developed self-consistent variational basis generation scheme, we have investigated the bipolaron-bipolaron interaction within the purview of Holstein-Hubbard and the extended-Holstein-Hubbard (F2H) model on a discrete one-dime nsional lattice. The density-matrix renormalization group (DMRG) method has also been used for the Holstein-Hubbard model. We have shown that there exists no bipolaron-bipolaron attraction in the Holstein-Hubbard model. In contrast, we have obtained clear-cut bipolaron-bipolaron attraction in the F2H model. Composite bipolarons are formed above a critical electron-phonon coupling strength, which can survive the finite Hubbard $U$ effect. We have constructed the phase diagram of F2H polarons and bipolarons, and discussed the phase separation in terms of the formation of composite bipolarons.
57 - Minjae Kim , B. I. Min 2011
We have investigated electronic structures and magnetic properties of O$_{2}$$M$F$_{6}$ ($M$=Sb, Pt), which are composed of two building blocks of strongly correlated electrons: O$_{2}^{+}$ dioxygenyls and $M$F$_{6}^{-}$ octahedra, by employing the f irst-principles electronic structure band method. For O$_{2}$SbF$_{6}$, as a reference system of O$_{2}$PtF$_{6}$, we have shown that the Coulomb correlation of O(2$p$) electrons drives the Mott insulating state. For O$_{2}$PtF$_{6}$, we have demonstrated that the Mott insulating state is induced by the combined effects of the Coulomb correlation of O(2$p$) and Pt(5$d$) electrons and the spin-orbit (SO) interaction of Pt(5$d$) states. The role of the SO interaction in forming the Mott insulating state of O$_{2}$PtF$_{6}$ is similar to the case of Sr$_{2}$IrO$_{4}$ that is a prototype of a SO induced Mott system with J$_{eff}=1/2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا