ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - C. Cheng , Y. B. Gao 2013
When the nonlinearity of nanomechanical resonator is not negligible, the quantum decoherence of charge qubit is studied analytically. Using nonlinear Jaynes-Cummings model, one explores the possibility of being quantum data bus for nonlinear nanomech anical resonator, the nonlinearity destroys the dynamical quantum information-storage and maintains the revival of quantum coherence of charge qubit. With the calculation of decoherence factor, we demonstrate the influence of the nonlinearity of nanomechanical resonator on engineered decoherence of charge qubit.
90 - X. Xiao , Y. B. Gao 2012
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperature, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.
71 - D. Z. Xu , Y. B. Gao , 2012
In order to examine whether or not the quantum phase transition of Dicke type exists in realistic systems, we revisit the model setup of the superconducting circuit QED from a microscopic many-body perspective based on the BCS theory with pseudo-spin presentation. By deriving the Dicke model with the correct charging terms from the minimum coupling principle, it is shown that the circuit QED system can exhibit superradiant quantum phase transition in the limit Nrightarrowinfty. The critical point could be reached at easiness by adjusting the extra parameters, the ratio of Josephson capacitance C_{J} to gate capacitance C_{g}, as well as the conventional one, the ratio of Josephson energy E_{J} to charging energy E_{C}.
The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that phonon blockade can serve as a signature of quantum behavior in nanomechanical reson ators. In analogy to photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber $s$-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with currently accessible experimental parameters.
We propose a quantum storage scheme independent of the current time-control schemes, and study a quantum data bus (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.
62 - Y. B. Gao , S. Yang , Yu-xi Liu 2009
We propose and study an intrinsic probing approach, without introducing any external detector, to mimic cavity QED effects in a qubit-nanomechanical resonator system. This metallic nanomechanical resonator can act as an intrinsic detector when a weak driving current passes through it. The nanomechanical resonator acts as both the cavity and the detector. A cavity QED-like effect is demonstrated by the correlation spectrum of the electromotive force between the two ends of the nanomechanical resonator. Using the quantum regression theorem and perturbation theory, we analytically calculate the correlation spectrum. In the weak driving limit, we study the effect on the vacuum Rabi splitting of both the strength of the driving as well as the frequency-detuning between the charge qubit and the nanomechanical resonator. Numerical calculations confirm the validity of our intrinsic probing approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا