ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the relation between the canonical model of quantum optics, the Jaynes-Cummings Hamiltonian and Dirac fermions in quantizing magnetic field. We demonstrate that Rabi oscillations are observable in the optical response of graphene, prov iding us with a transparent picture about the structure of optical transitions. While the longitudinal conductivity reveals chaotic Rabi oscillations, the Hall component measures coherent ones. This opens up the possibility of investigating a microscopic model of a few quantum objects in a macroscopic experiment with tunable parameters.
127 - F. Simon , B. Dora , F. Muranyi 2008
The temperature dependence of the electron spin relaxation time in MgB2 is anomalous as it does not follow the temperature dependence of the resistivity above 150 K, it has a maximum around 400 K, and it decreases for higher temperatures. This violat es the well established Elliot-Yafet theory of electron spin relaxation in metals. We show that the anomaly occurs when the quasi-particle scattering rate (in energy units) becomes comparable to the energy difference between the conduction- and a neighboring band. We find that the anomalous behavior is related to the unique band structure of MgB$_2$ and the large electron-phonon coupling. The saturating spin-lattice relaxation can be regarded as the spin transport analogue of the Ioffe-Regel criterion of electron transport.
88 - B. Dora , M. Gulacsi , J. Koltai 2008
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid (LL) state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theor y with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line-broadening which is related to the spin symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the non-interacting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.
The effect of weak potential and bond disorder on the density of states of graphene is studied. By comparing the self-consistent non-crossing approximation on the honeycomb lattice with perturbation theory on the Dirac fermions, we conclude, that the linear density of states of pure graphene changes to a non-universal power-law, whose exponent depends on the strength of disorder like 1-4g/sqrt{3}t^2pi, with g the variance of the Gaussian disorder, t the hopping integral. This can result in a significant suppression of the exponent of the density of states in the weak-disorder limit. We argue, that even a non-linear density of states can result in a conductivity being proportional to the number of charge carriers, in accordance with experimental findings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا