ترغب بنشر مسار تعليمي؟ اضغط هنا

The hierarchy problem in the Standard Model is usually understood as both a technical problem of stability of the calculation of the quantum corrections to the masses of the Higgs sector and of the unnatural difference between the Planck and gauge br eaking scales. Leaving aside the gauge sector, we implement on a purely scalar model a mechanism for generating naturally light scalar particles where both of these issues are solved. In this model, on top of terms invariant under a continuous symmetry, a highly non-renormalizable term is added to the action that explicitly breaks this symmetry down to a discrete one. In the spontaneously broken phase, the mass of the pseudo-Goldstone is then driven by quantum fluctuations to values that are non-vanishing but that are generically, that is, without fine-tuning, orders of magnitude smaller than the UV scale.
A functional renormalization group approach to $d$-dimensional, $N$-component, non-collinear magnets is performed using various truncations of the effective action relevant to study their long distance behavior. With help of these truncations we stud y the existence of a stable fixed point for dimensions between $d= 2.8$ and $d=4$ for various values of $N$ focusing on the critical value $N_c(d)$ that, for a given dimension $d$, separates a first order region for $N<N_c(d)$ from a second order region for $N>N_c(d)$. Our approach concludes to the absence of stable fixed point in the physical - $N=2,3$ and $d=3$ - cases, in agreement with $epsilon=4-d$-expansion and in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches based on conformal bootstrap program.
We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared r egulator, we find a transition between a high-temperature (disordered) phase and a low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the transition. In particular, we find the anomalous dimension $eta(Tkt)simeq 0.24$ and the stiffness jump $rho_s(Tkt^-)simeq 0.64$ at the transition temperature $Tkt$, in very good agreement with the exact results $eta(Tkt)=1/4$ and $rho_s(Tkt^-)=2/pi$, as well as an essential singularity of the correlation length in the high-temperature phase as $Tto Tkt$.
The effectiveness of the perturbative renormalization group approach at fixed space dimension d in the theory of critical phenomena is analyzed. Three models are considered: the O(N) model, the cubic model and the antiferromagnetic model defined on t he stacked triangular lattice. We consider all models at fixed d=3 and analyze the resummation procedures currently used to compute the critical exponents. We first show that, for the O(N) model, the resummation does not eliminate all non-physical (spurious) fixed points (FPs). Then the dependence of spurious as well as of the Wilson-Fisher FPs on the resummation parameters is carefully studied. The critical exponents at the Wilson-Fisher FP show a weak dependence on the resummation parameters. On the contrary, the exponents at the spurious FP as well as its very existence are strongly dependent on these parameters. For the cubic model, a new stable FP is found and its properties depend also strongly on the resummation parameters. It appears to be spurious, as expected. As for the frustrated models, there are two cases depending on the value of the number of spin components. When N is greater than a critical value Nc, the stable FP shows common characteristic with the Wilson-Fisher FP. On the contrary, for N<Nc, the results obtained at the stable FP are similar to those obtained at the spurious FPs of the O(N) and cubic models. We conclude from this analysis that the stable FP found for N<Nc in frustrated models is spurious. Since Nc>3, we conclude that the transitions for XY and Heisenberg frustrated magnets are of first order.
We show that the critical behaviour of two- and three-dimensional frustrated magnets cannot reliably be described from the known five- and six-loops perturbative renormalization group results. Our conclusions are based on a careful re-analysis of the resummed perturbative series obtained within the zero momentum massive scheme. In three dimensions, the critical exponents for XY and Heisenberg spins display strong dependences on the parameters of the resummation procedure and on the loop order. This behaviour strongly suggests that the fixed points found are in fact spurious. In two dimensions, we find, as in the O(N) case, that there is apparent convergence of the critical exponents but towards erroneous values. As a consequence, the interesting question of the description of the crossover/transition induced by Z2 topological defects in two-dimensional frustrated Heisenberg spins remains open.
We analyze the validity of perturbative renormalization group estimates obtained within the fixed dimension approach of frustrated magnets. We reconsider the resummed five-loop beta-functions obtained within the minimal subtraction scheme without eps ilon-expansion for both frustrated magnets and the well-controlled ferromagnetic systems with a cubic anisotropy. Analyzing the convergence properties of the critical exponents in these two cases we find that the fixed point supposed to control the second order phase transition of frustrated magnets is very likely an unphysical one. This is supported by its non-Gaussian character at the upper critical dimension d=4. Our work confirms the weak first order nature of the phase transition occuring at three dimensions and provides elements towards a unified picture of all existing theoretical approaches to frustrated magnets.
28 - B. Delamotte 2002
An elementary introduction to perturbative renormalization and renormalization group is presented. No prior knowledge of field theory is necessary because we do not refer to a particular physical theory. We are thus able to disentangle what is specif ic to field theory and what is intrinsic to renormalization. We link the general arguments and results to real phenomena encountered in particle physics and statistical mechanics.
We investigate the principal chiral model between two and four dimensions by means of a non perturbative Wilson-like renormalization group equation. We are thus able to follow the evolution of the effective coupling constants within this whole range of dimensions without having recourse to any kind of small parameter expansion. This allows us to identify its three dimensional critical physics and to solve the long-standing discrepancy between the different perturbative approaches that characterizes the class of models to which the principal chiral model belongs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا