ترغب بنشر مسار تعليمي؟ اضغط هنا

We measure the ratio $gamma$ of the momentum-transfer to the vibrational quenching cross section for the X ($^1Sigma^+$), $ u=1$, $mathrm{J=0}$ state of molecular thorium monoxide (ThO) in collisions with atomic $^3$He between 800 mK and 2.4 K. We ob serve indirect evidence for ThO--He van der Waals complex formation, which has been predicted by theory. We determine the 3-body recombination rate constant $Gamma_3$ at 2.4 K, and establish that the binding energy E$_b >$ 4 K.
We measure inelastic collisional cross sections for the ground $^3$F$_2$ state and the excited $^3$P$_0$ state of atomic thorium in cold collisions with $^3$He. We determine for Th ($^3$F$_2$) at 800 mK the ratio $gamma approx 500$ of the momentum-tr ansfer to Zeeman relaxation cross sections for collisions with $^3$He. For Th ($^3$P$_0$), we study electronic inelastic processes and find no quenching even after $10^6$ collisions. We also determine the radiative lifetime of Th ($^3$P$_0$) to be $tau > 130$ ms. This great stability of the metastable state opens up the possibility for further study, including trapping.
Noble gas permeabilities and diffusivities of Kapton, butyl, nylon, and Silver Shield are measured at temperatures between 22C and 115C. The breakthrough times and solubilities at 22C are also determined. The relationship of the room temperature perm eabilities to the noble gas atomic radii is used to estimate radon permeability for each material studied. For the noble gases tested, Kapton and Silver Shield have the lowest permeabilities and diffusivities, followed by nylon and butyl, respectively.
Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0 times 10^-10 cm^3 s^-1 and 1.1 times 10^-10 cm^3 s^-1, r espectively, 2-3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electrostatic anisotropy, in collisions between these submerged-shell L > 0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient.
123 - D. Farrah 2009
We apply methods from Bayesian inferencing and graph theory to a dataset of 102 mid-infrared spectra, and archival data from the optical to the millimeter, to construct an evolutionary paradigm for z<0.4 infrared-luminous galaxies (ULIRGs). We propos e that the ULIRG lifecycle consists of three phases. The first phase lasts from the initial encounter until approximately coalescence. It is characterized by homogeneous mid-IR spectral shapes, and IR emission mainly from star formation, with a contribution from an AGN in some cases. At the end of this phase, a ULIRG enters one of two evolutionary paths depending on the dynamics of the merger, the available quantities of gas, and the masses of the black holes in the progenitors. On one branch, the contributions from the starburst and the AGN to the total IR luminosity decline and increase respectively. The IR spectral shapes are heterogeneous, likely due to feedback from AGN-driven winds. Some objects go through a brief QSO phase at the end. On the other branch, the decline of the starburst relative to the AGN is less pronounced, and few or no objects go through a QSO phase. We show that the 11.2 micron PAH feature is a remarkably good diagnostic of evolutionary phase, and identify six ULIRGs that may be archetypes of key stages in this lifecycle.
We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا