ترغب بنشر مسار تعليمي؟ اضغط هنا

The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing sever al hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time data flow.
This paper reports on the systematic electromechanical characterization of a new three-axial force sensor used in dimensional metrology of micro components. The siliconbased sensor system consists of piezoresistive mechanicalstress transducers integr ated in thin membrane hinges supporting a suspended flexible cross structure. The mechanical behavior of the fragile micromechanical structure isanalyzed for both static and dynamic load cases. This work demonstrates that the silicon microstructure withstands static forces of 1.16N applied orthogonally to the front-side of the structure. A statistical Weibull analysis of the measured data shows that these values are significantly reduced if the normal force is applied to the back of the sensor. Improvements of the sensor system design for future development cycles are derived from the measurement results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا