ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how shape transitions in the neutron-rich exotic Si and S isotopes occur in terms of shell-model calculations with a newly constructed Hamiltonian based on V_MU interaction. We first compare the calculated spectroscopic-strength distributions for the proton 0d_5/2,3/2 and 1s_1/2 orbitals with results extracted from a 48Ca(e,ep) experiment to show the importance of the tensor-force component of the Hamiltonian. Detailed calculations for the excitation energies, B(E2) and two-neutron separation energies for the Si and S isotopes show excellent agreement with experimental data. The potential energy surface exhibits rapid shape transitions along the isotopic chains towards N=28 that are different for Si and S. We explain the results in terms of an intuitive picture involving a Jahn-Teller-type effect that is sensitive to the tensor-force-driven shell evolution. The closed sub-shell nucleus 42Si is a particularly good example of how the tensor-force-driven Jahn-Teller mechanism leads to a strong oblate rather than spherical shape.
We show how the shape evolution of the neutron-rich exotic Si and S isotopes can be understood as a Jahn-Teller effect that comes in part from the tensor-driven evolution of single-particle energies. The detailed calculations we present are in excell ent agreement with known experimental data, and we point out of new features that should be explored in new experiments. Potential energy surfaces are used to understand the shape evolutions. The sub-shell closed nucleus, $^{42}$Si, is shown to be a perfect example of a strongly oblate shape instead of a sphere through a robust Jahn-Teller mechanism. The distribution of spectroscopic factors measured by $^{48}$Ca(e,ep) experiment is shown to be well described, providing a unique test on the tensor-driven shell evolution.
This white paper, directed to the Stars and Stellar Evolution panel, has three objectives: 1) to provide the Astro2010 Decadal Survey with a vista into the goals of the nuclear physics and nuclear astrophysics community; 2) to alert the astronomical community of joint opportunities for discoveries at the interface between nuclear physics and astronomy; and 3) to delineate efforts in nuclear physics and describe the observational and theoretical advances in astrophysics necessary to make progress towards answering the following questions in the Nuclear Science 2007 Long Range Plan: 1) What is the origin and distribution of the elements? 2) What are the nuclear reactions that power stars and stellar explosions? 3) What is the nature of dense matter? The scope of this white paper concerns the specific area of low energy nuclear astrophysics. We define this as the area of overlap between astrophysics and the study of nuclear structure and reactions. Of the questions listed above, two -- What is the origin of the elements? and What is the nature of dense matter? -- were specifically listed in the National Academies Study, Connecting Quarks with the Cosmos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا