ﻻ يوجد ملخص باللغة العربية
This white paper, directed to the Stars and Stellar Evolution panel, has three objectives: 1) to provide the Astro2010 Decadal Survey with a vista into the goals of the nuclear physics and nuclear astrophysics community; 2) to alert the astronomical community of joint opportunities for discoveries at the interface between nuclear physics and astronomy; and 3) to delineate efforts in nuclear physics and describe the observational and theoretical advances in astrophysics necessary to make progress towards answering the following questions in the Nuclear Science 2007 Long Range Plan: 1) What is the origin and distribution of the elements? 2) What are the nuclear reactions that power stars and stellar explosions? 3) What is the nature of dense matter? The scope of this white paper concerns the specific area of low energy nuclear astrophysics. We define this as the area of overlap between astrophysics and the study of nuclear structure and reactions. Of the questions listed above, two -- What is the origin of the elements? and What is the nature of dense matter? -- were specifically listed in the National Academies Study, Connecting Quarks with the Cosmos.
Understanding the origin of the elements has been a decades long pursuit, with many open questions still remaining. Old stars found in the Milky Way and its dwarf satellite galaxies can provide answers because they preserve clean elemental patterns o
The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT missions Public Archives. In our analysis, we performe
COSMOS J100043.15+020637.2 is a merger remnant at z = 0.36 with two optical nuclei, NW and SE, offset by 500 mas (2.5 kpc). Prior studies suggest two competing scenarios for these nuclei: (1) SE is an active galactic nucleus (AGN) lost from NW due to
In present paper, we investigate the multifractality signatures in hourly time series extracted from CoRoT spacecraft database. Our analysis is intended to highlight the possibility that astrophysical time series can be members of a particular class
The analysis of the variability of active galactic nuclei (AGNs) at different wavelengths and the study of possible correlations among different spectral windows are nowadays a major field of inquiry. Optical variability has been largely used to iden