ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate predictions of reactive mixing are critical for many Earth and environmental science problems. To investigate mixing dynamics over time under different scenarios, a high-fidelity, finite-element-based numerical model is built to solve the fa st, irreversible bimolecular reaction-diffusion equations to simulate a range of reactive-mixing scenarios. A total of 2,315 simulations are performed using different sets of model input parameters comprising various spatial scales of vortex structures in the velocity field, time-scales associated with velocity oscillations, the perturbation parameter for the vortex-based velocity, anisotropic dispersion contrast, and molecular diffusion. Outputs comprise concentration profiles of the reactants and products. The inputs and outputs of these simulations are concatenated into feature and label matrices, respectively, to train 20 different machine learning (ML) emulators to approximate system behavior. The 20 ML emulators based on linear methods, Bayesian methods, ensemble learning methods, and multilayer perceptron (MLP), are compared to assess these models. The ML emulators are specifically trained to classify the state of mixing and predict three quantities of interest (QoIs) characterizing species production, decay, and degree of mixing. Linear classifiers and regressors fail to reproduce the QoIs; however, ensemble methods (classifiers and regressors) and the MLP accurately classify the state of reactive mixing and the QoIs. Among ensemble methods, random forest and decision-tree-based AdaBoost faithfully predict the QoIs. At run time, trained ML emulators are $approx10^5$ times faster than the high-fidelity numerical simulations. Speed and accuracy of the ensemble and MLP models facilitate uncertainty quantification, which usually requires 1,000s of model run, to estimate the uncertainty bounds on the QoIs.
Spectral induced polarization (SIP) is a non-intrusive geophysical method that is widely used to detect sulfide minerals, clay minerals, metallic objects, municipal wastes, hydrocarbons, and salinity intrusion. However, SIP is a static method that ca nnot measure the dynamics of flow and solute/species transport in the subsurface. To capture these dynamics, the data collected with the SIP technique needs to be coupled with fluid flow and reactive-transport models. To our knowledge, currently, there is no simulator in the open-source literature that couples fluid flow, solute transport, and SIP process models to analyze geoelectrical signatures in a large-scale system. A massively parallel simulation framework (PFLOTRAN-SIP) was built to couple SIP data to fluid flow and solute transport processes. This framework built on the PFLOTRAN-E4D simulator that couples PFLOTRAN and E4D, without sacrificing computational performance. PFLOTRAN solves the coupled flow and solute transport process models to estimate solute concentrations, which were used in Archies model to compute bulk electrical conductivities at near-zero frequency. These bulk electrical conductivities were modified using the Cole-Cole model to account for frequency dependence. Using the estimated frequency-dependent bulk conductivities, E4D simulated the real and complex electrical potential signals for selected frequencies for SIP. The PFLOTRAN-SIP framework was demonstrated through a synthetic tracer-transport model simulating tracer concentration and electrical impedances for four frequencies. Later, SIP inversion estimated bulk electrical conductivities by matching electrical impedances for each specified frequency. The estimated bulk electrical conductivities were consistent with the simulated tracer concentrations from the PFLOTRAN-SIP forward model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا