ترغب بنشر مسار تعليمي؟ اضغط هنا

We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and someti mes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion ($sigmaapprox 50$ km s$^{-1}$) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.
We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are u sed to study the evolution of the Tully-Fisher, velocity-size and stellar mass-angular momentum relations in dense environments over cosmic time. We use 2D and 3D spectroscopy to analyze the kinematics of our cluster galaxies and extract their maximum rotation velocities (Vmax). Our methods are consistently applied to all our cluster samples which make them ideal for an evolutionary comparison. Up to redshift one, our cluster samples show evolutionary trends compatible with previous observational results in the field and in accordance with semianalytical models and hydrodynamical simulations concerning the Tully-Fisher and velocity-size relations. However, we find a factor 3 drop in disk sizes and an average B-band luminosity enhancement of 2 mag by z=1.5. We discuss the role that different cluster-specific interactions may play in producing this observational result. In addition, we find that our intermediate-to-high redshift cluster galaxies follow parallel sequences with respect to the local specific angular momentum-stellar mass relation, although displaying lower angular momentum values in comparison with field samples at similar redshifts. This can be understood by the stronger interacting nature of dense environments with respect to the field.
68 - N. Lampichler 2017
(abridged) The evolution of the B-band Tully Fisher relation (TFR) and of the stellar mass TFR up to z~1 is investigated using VIMOS tilted-slit spectra of 160 zCOSMOS galaxies. Furthermore, the stellar-to-halo-mass ratio (SHMR) as a function of mass is studied and compared to predictions from simulations. Interestingly, the derived SHMR is in agreement with abundance matching models, although using simple derivations of vcircular from vmax and of rvirial from r1/2. This shows that this new approach can be used complementary to abundance matching techniques to get new insights in the stellar content of dark matter halos for individual galaxies.
We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z=1.4, and 8 additional field galaxies at 1<z<1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns. Our spectro scopy was complemented with HST-ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity (Vmax). Vmax was robustly determined for 6 cluster galaxies and 3 field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band Tully-Fisher relation (TFR) and the local Velocity-Size relation (VSR), finding that cluster galaxies are on average 1.6 mags brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (i.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The average deviation from the local B-band TFR is -0.7 mags for the high-mass subsample. This mild evolution may be driven by younger stellar populations of distant galaxies with respect to their local counterparts, and thus, an increasing luminosity is expected towards higher redshifts. However, the low-mass group is made of 3 highly overluminous galaxies with average TFR offsets of -2.4 mags. This deviation can no longer be explained by the gradual evolution of SP with lookback time and thus, we suspect that we see rather compact galaxies that got an enhancement of star formation during their infall towards the dense regions of the cluster due to interactions with the intracluster medium.
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughe ning of intrinsic 71{deg} stripe domains in BiFeO$_3$ thin films, we find unexpectedly high values of the roughness exponent {zeta} = 0.74 $pm$ 0.10, significantly different from those obtained for artificially written domain walls in this and other ferroelectric materials. The large value of the exponent suggests that a random field-dominated pinning, combined with stronger disorder and strain effects due to the step-bunching morphology of the samples, could be the dominant source of pinning in the system.
192 - B. Ziegler , B. Muller , A. Krapf 2007
The kink in the dispersion and the drop in the width observed by angle-resolved photoemission in the nodal direction of the Brillouin zone of $mathrm{Bi_{2-x}Pb_xSr_2CaCu_2O_{8+ delta}}$ (abbreviated as (Pb)Bi2212) has attracted broad interest [1-3]. Surprisingly optimally lead-doped (Pb)Bi2212 with $mathrm{T_C>89K}$ as well as the shadow band were not investigated so far, although the origin of the kink and the drop is still under strong debate. In this context a resonant magnetic-mode scenario and an electron-phonon coupling scenario are discussed controversially. Here we analyze the relevant differences between both scenarios and conclude that the kink and the drop are caused by a coupling of the electronic system to a phononic mode at least in the nodal direction. It is found that besides the dispersion and the drop in the width also the peak height as a new criterion can be used to define the energy scale of the interaction, giving a new means for a precise and consistent determination of the kink energy.
225 - L. Dudy , B. Mueller , B. Ziegler 2007
It is well known that the (1x5) superstructure of Bi cuprate superconductors will be suppressed due to optimum doping with Pb. Nevertheless, a Fermi surface map of (Pb,La)-Bi2201 (Pb = 0.4 and La = 0.4) determined by angular resolved photoemission (A RPES) revealed additional Fermi surface features. Low energy electron diffraction and X-ray diffraction of these samples showed no sign of any superstructure. Scanning tunneling microscopy (STM), on the other hand, revealed two distinct modulations of the charge density, one of (1x32) and a second of (6x6) periodicity. The wave vectors of both modulations have been extracted and used to simulate the corresponding Fermi surface, which is compared with the experimental one. The origin of these modulations is discussed in terms of dopant ordering.
We present a spectroscopic analysis of two galaxy clusters out to ~4Mpc at z~0.2. The two clusters VMF73 and VMF74 identified by Vikhlinin et al. (1998) were observed with MOSCA at the Calar Alto 3.5m telescope. Both clusters lie in the ROSAT PSPC fi eld R285 and were selected from the X-ray Dark Cluster Survey (Gilbank et al. 2004) that provides optical V- and I-band data. VMF73 and VMF74 are located at respective redshifts of z=0.25 and z=0.18 with velocity dispersions of 671 km/s and 442 km/s, respectively. The spectroscopic observations reach out to ~2.5 virial radii. Line strength measurements of the emission lines H_alpha and [OII]3727 are used to assess the star formation activity of cluster galaxies which show radial and density dependences. The mean and median of both line strength distributions as well as the fraction of star forming galaxies increase with increasing clustercentric distance and decreasing local galaxy density. Except for two galaxies with strong H_alpha and [OII] emission, all of the cluster galaxies are normal star forming or passive galaxies. Our results are consistent with other studies that show the truncation in star formation occurs far from the cluster centre.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا