ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - B. L. Kang , M. Z. Shi , S. J. Li 2019
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher temperature than the long-range phase coherence in the underdoped high-Tc cuprate superconductors. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on SrTiO3 substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below Tp ~ 60 K in two layered FeSe-based superconductors with quasi-two-dimension. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicate that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the two-dimensional iron-based superconductors as widely observed in high-Tc cuprate superconductors.
54 - G. Wu , B. L. Kang , Y. L. Li 2017
In intercalated transition metal dichalcogenide $Fe_xTaS_2$ (0.2 $leq$ x $leq$ 0.4) single crystals, large magnetic anisotropy is observed. Transport property measurements indicate that heavy Fe-doping leads to a large anisotropy of resistivity ($rho $$_{c}$/$rho$$_{ab}$). A sharp M-H hysteresis curve is observed with magnetic field along c-axis, while a linear magnetization appears with magnetic field applied in the ab-plane. The angular dependent magnetic susceptibility from in-plane to out-of-plane indicates that magnetic moments are strongly pinned along the c-axis in an unconventional manner and the coercive field reaches as large as 6 T at T = 5 K. First-principles calculation clearly suggests that the strong spin-orbital coupling give rise to such a large anisotropy of magnetism. The strong pinning effect of magnetic moments along c-axis makes this material a very promising candidate for the development of spin-aligner in spintronics devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا