ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, by A. Elduque and A. Labra a new technique and a type of an evolution algebra are introduced. Several nilpotent evolution algebras defined in terms of bilinear forms and symmetric endomorphisms are constructed. The technique then used for t he classification of the nilpotent evolution algebras up to dimension five. In this paper we develop this technique for high dimensional evolution algebras. We construct nilpotent evolution algebras of any type. Moreover, we show that, except the cases considered by Elduque and Labra, this construction of nilpotent evolution algebras does not give all possible nilpotent evolution algebras.
In this paper the description of solvable Lie algebras with triangular nilradicals is extended to Leibniz algebras. It is proven that the matrices of the left and right operators on elements of Leibniz algebra have upper triangular forms. We establis h that solvable Leibniz algebra of a maximal possible dimension with a given triangular nilradical is a Lie algebra. Furthermore, solvable Leibniz algebras with triangular nilradicals of low dimensions are classified.
In the present paper we obtain the list of algebras, up to isomorphism, such that closure of any complex finite-dimensional algebra contains one of the algebra of the given list.
In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leib niz algebras of the first family are characteristically nilpotent. Moreover, for the first family we classify non-characteristically nilpotent algebras by means of Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras which lie in the complementary set to those characteristically nilpotent.
W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not true. Namely, we give an example of non nilpotent Leibniz algebra which admits an invertible Leibniz-derivation. In order to extend the results of paper W. A. Moens for Leibniz algebras we introduce a definition of Leibniz-derivation of Leibniz algebras which agrees with Leibniz-derivation of Lie algebras case. Further we prove that a Leibniz algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. Moreover, the result that solvable radical of a Lie algebra is invariant with respect to a Leibniz-derivation was extended to the case of Leibniz algebras.
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif ication of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.
In this paper we classify solvable Leibniz algebras whose nilradical is a null-filiform algebra. We extend the obtained classification to the case when the solvable Leibniz algebra is decomposed as a direct sum of its nilradical, which is a direct su m of null-filiform ideals, and a one-dimensional complementary subspace. Moreover, in this case we establish that these ideals are ideals of the algebra, as well.
We consider algebras with basis numerated by elements of a group $G.$ We fix a function $f$ from $Gtimes G$ to a ground field and give a multiplication of the algebra which depends on $f$. We study the basic properties of such algebras. In particular , we find a condition on $f$ under which the corresponding algebra is a Leibniz algebra. Moreover, for a given subgroup $hat G$ of $G$ we define a $hat G$-periodic algebra, which corresponds to a $hat G$-periodic function $f,$ we establish a criterion for the right nilpotency of a $hat G$-periodic algebra. In addition, for $G=mathbb Z$ we describe all $2mathbb Z$- and $3mathbb Z$-periodic algebras. Some properties of $nmathbb Z$-periodic algebras are obtained.
The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz $n$-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz $n$-algebra and Cartan subalgebras a nd regular elements of the corresponding factor $n$-Lie algebra is established.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا