ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Coll ider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, non-universal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson~($h^0$), which is identified with the $126$ GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale.The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic $omegapi$ form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds.We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the $omegapi$ form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.
We consider the issue of the top quark Yukawa coupling measurement in a model in dependent and general case with the inclusion of CP-violation in the coupling. Arguably the best process to study this coupling is the associa ted production of Higgs bo son along with a $tbar t$ pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement assuming a Standard Model (SM) - like coupling are available in the context of ILC, conclude that th e coupling could be pinned down at about 10% level with modest luminosity, our investigations show that the scenario could be different in case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the couplin g, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies with an ILC of center of mass energies of 500 GeV, 800 GeV and 1000 GeV show that moderate CP-mixing in the Higgs sector could change the sensitivity to about 20 %, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. While detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of SM such as for a model independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that, a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be excercised in the measurem ent of the Yukawa couplings and the conclusions drawn from it.
The recently discovered scalar resonance at the LHC is now almost confirmed to be a Higgs Boson, whose CP properties are yet to be established. At the ILC with and without polarized beams, it may be possible to probe these properties at high precisio n. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process $e^+ e^- to t bar{t} Phi$, with $Phi$ mainly decaying into a $bbar b$ pair. We have compared the case of a minimal extension of the SM case (Model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating Two-Higgs Doublet Model (Model II) that permits a more general description of the couplings. We have considered the ILC with $sqrt{s}=800$,GeV and integrated luminosity of $300, {rm fb}^{-1}$. Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in Model II, while it is difficult to probe these departures in Model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increases the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the SM.
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t=0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher order ChPT corrections at the second Callan-Treiman point.
We attempt a comprehensive analysis of the low lying charm meson states which present several puzzles, including the poor determination of masses of several non-strange excited mesons. We use the well-determined masses of the ground states and the st range first excited states to `predict the mass of the non-strange first excited state in the framework of heavy hadron chiral perturbation theory, an approach that is complementary to the well-known analysis of Mehen and Springer. This approach points to values for the masses of these states that are smaller than the experimental determinations. We provide a critical assessment of these mass measurements and point out the need for new experimental information.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا