ترغب بنشر مسار تعليمي؟ اضغط هنا

Type IIb Supernova (SN) 2011dh, with conclusive detection of an unprecedented Yellow Supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosi on. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ~500 days after the explosion on Chandra archival data, providing a solidly derived mass loss rate of an YSG progenitor for the first time. We find that the circumstellar media (CSM) should be dense, more than that expected from a Wolf-Rayet (WR) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a WR progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact WR star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass loss rate is 3 x 10^{-6} Msun/year for the mass loss velocity of ~20 km/s in the final ~1,300 years before the explosion. The derived mass loss properties are largely consistent with the standard wind mass loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at >1,300 years before the explosion, is a likely scenario to produce the YSG progenitor.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected o nly from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
143 - Kentaro Someya 2013
This paper presents a detailed analysis of supernova remnant (SNR) N103B located in the Large Magellanic Cloud (LMC), based on Suzaku and Chandra observations. The spectrum of the entire SNR was reproduced using 3 ISM components with the kT of 0.32, 0.56, and 0.92keV and one ejecta component of 3.96keV, based on spectral analysis of the Suzaku/XIS data. The ejecta was overabundant in heavy elements, such as Mg, Si, S, Ca, Fe, and Ni. The unprecedentedly high quality of data obtained by XIS, allowed us to correctly distinguish between the emissions from the ISM and the ejecta for the first time. Combining XIS spectral analysis with Chandra/ACIS image analysis, we verified that the ejecta distributions for elements from Si to Fe-K were similar to one another, although Fe-K emission was located slightly inward compared with that of lighter elements such as Si, S, Ar, and Ca. The onion-like structure of the ejecta was maintained after the SN. In addition, the ISM emission represented by O and Fe-L was located inside the ejecta emission. We compared hydrogen-rich ejecta plasma, which is indicative of Type II SNRs, with plasma rich in heavy elements and poor in hydrogen, which is mainly observed in Type Ia. In the case of N103B, we could not determine whether the origin of the continuum emission in the 4.0-6.0keV band was from ejecta or high-temperature ISM only based on the spectral modeling of XIS data. High-energy continuum images in the 5.2-6.0keV band obtained by ACIS were extremely similar to those of ejecta, implying that the origin of the high-energy continuum might indeed be the ejecta. By combining spectral analysis with high-energy continuum images, we found some indications for H-dominated plasma, and as a result, that the progenitor of N103B might have been a Type II. The progenitor mass was estimated to be 13 Msun based on the abundance patterns of Mg, Fe, and Ni relative to Si.
131 - Yukikatsu Terada 2012
The bow shocks of runaway stars with strong stellar winds of over 2000 km s$^{-1}$ can serve as particle acceleration sites. The conversion from stellar wind luminosity into particle acceleration power has an efficiency of the same order of magnitude as those in supernova remnants, based on the radio emission from the bow shock region of runaway star BD+43$^circ$3654 citep{Benaglia10}.If this object exhibits typical characteristics, then runaway star systems can contribute a non-negligible fraction of Galactic cosmic-ray electrons. To constrain the maximum energy of accelerated particles from measurements of possible non-thermal emissions in the X-ray band, Suzaku observed BD+43$^circ$3654 in April 2011 with an exposure of 99 ks. Because the onboard instruments have a stable and low background level, Suzaku detected a possible enhancement over the background of $7.6pm 3.4$ cnt arcmin$^{-2}$ at the bow shock region, where the error represents the 3 sigma statistics only. However, the excess is not significant within the systematic errors of non-X-ray and cosmic-ray backgrounds of the X-ray Imaging Spectrometer, which are $pm 6.0$ and $pm 34$ cnt arcmin$^{-2}$, respectively, and the 3-sigma upper limit in the X-ray luminosity from the shock region, which is $1.1 times 10^{32}$ erg s$^{-1}$ per 41.2 arcmin$^2$ in the 0.5 to 10 keV band. This result leads to three conclusions: (1) a shock-heating process is inefficient on this system; (2) the maximum energy of electrons does not exceed $sim$ 10 TeV, corresponding to a Lorentz factor of less than $10^7$; and (3) the magnetic field in the shock acceleration site might not be as turbulent as those in pulsar wind nebulae and supernova remnants.
132 - Aya Bamba 2012
A detailed analysis of the nonthermal X-ray emission from the North-Western and Southern parts of the supernova remnant (SNR) HESS J1731$ - $347 with {it Suzaku} is presented. The shell portions covered by the observations emit hard and line-less X-r ays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index $Gamma$ of 1.8-2.7 and an absorption column density $N_{rm H}$ of (1.0-2.1)$times 10^{22}$ cm$^{-2}$. These quantities change significantly from region to region; the North-Western part of the SNR has the hardest and most absorbed spectrum. The Western part of the X-ray shell has a smaller curvature than North-Western and Southern shell segments. A comparison of the X-ray morphology to the Very High Energy (VHE) gamma-ray and radio images was performed. The efficiency of electron acceleration and emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.
A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy, and studied h ow their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than ~5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10^(47-48) ergs, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.
81 - Jacco Vink 2010
We present a statistical analysis of the X-ray luminosity of rotation powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov (2008) and we complement this with an analysis of the gamma-ray-emission of Fermi detected pul sars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and gamma-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient gamma-ray emitters. We divided the X-ray sample in a young (Tau < 1.7x10^4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and gamma-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L_X ~ Pdot^3/P^6. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency eta = L_X/Edot = ~ 8x10^-5. For the gamma-ray luminosity we confirm that L_gamma ~ Edot^(1/2). We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.
93 - Aya Bamba 2010
During the search for counterparts of very-high-energy gamma-ray sources, we serendipitously discovered large, extended, low surface brightness emission from PWNe around pulsars with the ages up to ~100 kyrs, a discovery made possible by the low and stable background of the Suzaku X-ray satellite. A systematic study of a sample of 8 of these PWNe, together with Chandra datasets, has revealed us that the nebulae keep expanding up to for ~100 kyrs, although time scale of the synchrotron X-ray emission is only ~60 yr for typical magnetic fields of 100 microG. Our result suggests that the accelerated electrons up to ~80 TeV can escape from the PWNe without losing most energies. Moreover, in order to explain the observed correlation between the X-ray size and the pulsar spindwon age, the magnetic field strength in the PWNe must decrease with time.
81 - Aya Bamba 2009
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down luminosity of the pulsars, Edot. A logarithmic linear fit between the two parameters yields log r = (0.57 +- 0.22) log Edot -22.3 +- 8.0 with a correlation coefficient of 0.82, where the units of r and Edot are pc and ergs s^-1, respectively. The value obtained for the Edot dependency of r is consistent with a square root law, which is theoretically expected. This is the first observational evidence of this dependency, and provides a useful tool to estimate the spin-down energies of pulsars without direct detections of pulsation. Applications of this dependency to some other samples are also shown.
77 - Hiroya Yamaguchi , Aya Bamba , 2009
This paper reports on the Suzaku results of thermal and non-thermal features of 30 Dor C, a supernova remnant (SNR) in a superbubble of the Large Magellanic Cloud (LMC). The west rim exhibits a non-thermal X-ray spectrum with no thermal component. A single power-law model is rejected but a power-law model with spectral cutoff is accepted. The cutoff frequency of $(3-7)times 10^{17}$ Hz is the highest among the shell type SNRs like SN 1006 ($sim 6times 10^{16}$ Hz), and hence 30 Dor C would be the site of the highest energy accelerator of the SNR shock. The southeast (SE) and northeast (NE) rims have both the thermal and non-thermal components. The thin-thermal plasmas in the both rims are in collisional ionization equilibrium state. The electron temperature of the plasma in the SE rim ($kT_e sim 0.7$ keV) is found to be higher than the previously reported value. The power-law index from SE is nearly the same as, while that from the NE is larger than that of the West rim. The SNR age would be in the range of $(4-20)times 10^3$ yr. Thus, 30 Dor C is likely to be the oldest shell-like SNR with non-thermal emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا