ترغب بنشر مسار تعليمي؟ اضغط هنا

We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying t he power sigma is analogous to varying the space dimension d in a short-range model. For sigma=0.6, which is in the mean field regime regime, we find clear evidence for an AT line. For sigma = 0.85, which is in the non-mean-field regime and corresponds to a space dimension of close to 3, we find no AT line, though we cannot rule one out for very small fields. Finally for sigma=0.75, which is in the non-mean-field regime but closer to the mean-field boundary, the evidence suggests that there is an AT line, though the possibility that even larger sizes are needed to see the asymptotic behavior can not be ruled out.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا