ترغب بنشر مسار تعليمي؟ اضغط هنا

Community detection helps us simplify the complex configuration of networks, but communities are reliable only if they are statistically significant. To detect statistically significant communities, a common approach is to resample the original netwo rk and analyze the communities. But resampling assumes independence between samples, while the components of a network are inherently dependent. Therefore, we must understand how breaking dependencies between resampled components affects the results of the significance analysis. Here we use scientific communication as a model system to analyze this effect. Our dataset includes citations among articles published in journals in the years 1984-2010. We compare parametric resampling of citations with non-parametric article resampling. While citation resampling breaks link dependencies, article resampling maintains such dependencies. We find that citation resampling underestimates the variance of link weights. Moreover, this underestimation explains most of the differences in the significance analysis of ranking and clustering. Therefore, when only link weights are available and article resampling is not an option, we suggest a simple parametric resampling scheme that generates link-weight variances close to the link-weight variances of article resampling. Nevertheless, when we highlight and summarize important structural changes in science, the more dependencies we can maintain in the resampling scheme, the earlier we can predict structural change.
Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical s ignificance of the network communities, or the robustness of the detected structure, one approach is to perturb the network structure by removing links and measure how much the communities change. However, perturbing sparse networks is challenging because they are inherently sensitive; they shatter easily if links are removed. Here we propose a simple method to perturb sparse networks and assess the significance of their communities. We generate resampled networks by adding extra links based on local information, then we aggregate the information from multiple resampled networks to find a coarse-grained description of significant clusters. In addition to testing our method on benchmark networks, we use our method on the sparse network of the European Court of Justice (ECJ) case law, to detect significant and insignificant areas of law. We use our significance analysis to draw a map of the ECJ case law network that reveals the relations between the areas of law.
In social systems, people communicate with each other and form groups based on their interests. The pattern of interactions, the network, and the ideas that flow on the network naturally evolve together. Researchers use simple models to capture the f eedback between changing network patterns and ideas on the network, but little is understood about the role of past events in the feedback process. Here we introduce a simple agent-based model to study the coupling between peoples ideas and social networks, and better understand the role of history in dynamic social networks. We measure how information about ideas can be recovered from information about network structure and, the other way around, how information about network structure can be recovered from information about ideas. We find that it is in general easier to recover ideas from the network structure than vice versa.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا