ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first fully 3D MHD simulation for magnetic channeling and confinement of a radiatively driven, massive-star wind. The specific parameters are chosen to represent the prototypical slowly rotating magnetic O star theta^1 Ori C, for which centrifugal and other dynamical effects of rotation are negligible. The computed global structure in latitude and radius resembles that found in previous 2D simulations, with unimpeded outflow along open field lines near the magnetic poles, and a complex equatorial belt of inner wind trapping by closed loops near the stellar surface, giving way to outflow above the Alfv{e}n radius. In contrast to this previous 2D work, the 3D simulation described here now also shows how this complex structure fragments in azimuth, forming distinct clumps of closed loop infall within the Alfv{e}n radius, transitioning in the outer wind to radial spokes of enhanced density with characteristic azimuthal separation of $15-20 degr$. Applying these results in a 3D code for line radiative transfer, we show that emission from the associated 3D `dynamical magnetosphere matches well the observed Halpha emission seen from theta^1 Ori C, fitting both its dynamic spectrum over rotational phase, as well as the observed level of cycle to cycle stochastic variation. Comparison with previously developed 2D models for Balmer emission from a dynamical magnetosphere generally confirms that time-averaging over 2D snapshots can be a good proxy for the spatial averaging over 3D azimuthal wind structure. Nevertheless, fully 3D simulations will still be needed to model the emission from magnetospheres with non-dipole field components, such as suggested by asymmetric features seen in the Halpha equivalent-width curve of theta^1 Ori C.
61 - Yael Naze , Gregor Rauw 2009
High-energy emissions are good indicators of peculiar behaviours in stars. We have therefore obtained an XMM-Newton observation of HD155806 and 1RXSJ171502.4-333344, and derived their spectral properties for the first time. The X-ray spectrum of HD15 5806 appears soft, even slightly softer than usual for O-type stars (as shown by a comparison with the O9 star HD155889 in the same XMM field). It is well-fitted with a two-component thermal model with low temperatures (0.2 and 0.6 keV), and it shows no overluminosity (log[LX/Lbol]=-6.75). The high-resolution spectrum, though noisy, reveals a few broad, symmetric X-ray lines (FWHM ~ 2500 km/s). The X-ray emission is compatible with the wind-shock model and therefore appears unaffected by the putative dense equatorial regions at the origin of the Oe classification. 1RXSJ171502.4-333344 is a nearby flaring source of moderate X-ray luminosity (log[LX/Lbol]=-3), with a soft thermal spectrum composed of narrow lines and presenting a larger abundance of elements (e.g. Ne) with a high first ionization potential (FIP) compared to lower-FIP elements. All the evidence indicates a coronal origin for the X-ray emission, in agreement with the dMe classification of this source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا