ﻻ يوجد ملخص باللغة العربية
We present the first fully 3D MHD simulation for magnetic channeling and confinement of a radiatively driven, massive-star wind. The specific parameters are chosen to represent the prototypical slowly rotating magnetic O star theta^1 Ori C, for which centrifugal and other dynamical effects of rotation are negligible. The computed global structure in latitude and radius resembles that found in previous 2D simulations, with unimpeded outflow along open field lines near the magnetic poles, and a complex equatorial belt of inner wind trapping by closed loops near the stellar surface, giving way to outflow above the Alfv{e}n radius. In contrast to this previous 2D work, the 3D simulation described here now also shows how this complex structure fragments in azimuth, forming distinct clumps of closed loop infall within the Alfv{e}n radius, transitioning in the outer wind to radial spokes of enhanced density with characteristic azimuthal separation of $15-20 degr$. Applying these results in a 3D code for line radiative transfer, we show that emission from the associated 3D `dynamical magnetosphere matches well the observed Halpha emission seen from theta^1 Ori C, fitting both its dynamic spectrum over rotational phase, as well as the observed level of cycle to cycle stochastic variation. Comparison with previously developed 2D models for Balmer emission from a dynamical magnetosphere generally confirms that time-averaging over 2D snapshots can be a good proxy for the spatial averaging over 3D azimuthal wind structure. Nevertheless, fully 3D simulations will still be needed to model the emission from magnetospheres with non-dipole field components, such as suggested by asymmetric features seen in the Halpha equivalent-width curve of theta^1 Ori C.
Massive stars inject mechanical and radiative energy into the surrounding environment, which stirs it up, heats the gas, produces cloud and intercloud phases in the interstellar medium, and disrupts molecular clouds (the birth sites of new stars). St
This paper presents results obtained from Stokes I and V spectra of the B2Vp star sigma Ori E, observed by both the Narval and ESPaDOnS spectropolarimeters. Using Least- Squares Deconvolution, we investigate the longitudinal magnetic field at the cur
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$
We have used existing optical emission and absorption lines, [C II] emission lines, and H I absorption lines to create a new model for a Central Column of material near the Trapezium region of the Orion Nebula. This was necessary because recent high
In recent years, the stars of the Of?p category have revealed a wealth of peculiar phenomena: varying line profiles, photometric changes, and X-ray overluminosity are only a few of their characteristics. Here we review their physical properties, to f