ترغب بنشر مسار تعليمي؟ اضغط هنا

Nitrogen oxides are textbook class of molecular compounds, with extensive industrial applications. Nitrogen and oxygen are also among the most abundant elements in the universe. We explore the N-O system at 0 K and up to 500 GPa though ab initio evol utionary simulations. Results show that two phase transformations of stable molecular NO2 exist at 7 and 64 GPa, and followed by decomposition of NO2 at 91 GPa. All of the NO+NO3- structures are found to be metastable at T=0 K, so experimentally reported ionic NO+NO3- is either metastable or stabilized by temperature. Upon increasing pressure, N2O5 transforms from P-1 to C2/c structure at 51 GPa. NO becomes thermodynamically stable at 198 GPa. This polymeric phase is superconducting (Tc = 2.0 K) and contains a -N-N- backbone.
It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GP a using variable-composition evolutionary structure predictions. We find that Ca5C2, Ca2C, Ca3C2, CaC, Ca2C3, and CaC2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance are the base-centered monoclinic phase (space group C2/m) of Ca2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P21/c) of CaC with zigzag C4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca5C2 with semimetallic behaviour.
Sodium chloride (NaCl), or rocksalt, is well characterized at ambient pressure. Due to the large electronegativity difference between Na and Cl atoms, it has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and B1-typ e crystal structure. Here, by combining theoretical predictions and diamond anvil cell experiments we show that new materials with different stoichiometries emerge at pressure as low as 20 GPa. Compounds such us Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 are theoretically stable and have unusual bonding and electronic properties. To test this prediction, at 55-80 GPa we synthesized cubic and orthorhombic NaCl3 at 55-70 GPa and 2D-metallic tetragonal Na3Cl. This proves that novel compounds, violating chemical intuition, can be thermodynamically stable even in simplest systems at non-ambient conditions.
The photovoltaic effect in the BiFeO3/TiO2 heterostructures can be tuned by epitaxial strain and an electric field in the visible-light region which is manifested by the enhancement of absorption activity in the heterojunction under tensile strain an d an electric field based on the first-principles calculations. It is suggested that there are coupling between photon, spin carrier, charge, orbital, and lattice in the interface of the bilayer film which makes the heterojunction an intriguing candidate towards fabricating the multifunctional photoelectric devices based on spintronics. The microscopic mechanism involved in the heterostruces is related deeply with the spin transfer and charge rearrangement between the Fe 3d and O 2p orbitals in the vicinity of the interface.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable comp ounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.
At ambient pressure, sodium, chlorine, and their only known compound NaCl, have well-understood crystal structures and chemical bonding. Sodium is a nearly-free-electron metal with the bcc structure. Chlorine is a molecular crystal, consisting of Cl2 molecules. Sodium chloride, due to the large electronegativity difference between Na and Cl atoms, has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and rocksalt (B1-type) crystal structure in accordance with Paulings rules. Up to now, Na-Cl was thought to be an ultimately simple textbook system. Here, we show that under pressure the stability of compounds in the Na-Cl system changes and new materials with different stoichiometries emerge at pressure as low as 25 GPa. In addition to NaCl, our theoretical calculations predict the stability of Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 compounds with unusual bonding and electronic properties. The bandgap is closed for the majority of these materials. Guided by these predictions, we have synthesized cubic NaCl3 at 55-60 GPa in the laser-heated diamond anvil cell at temperatures above 2000 K.
The solid inner core of the Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. There have been a growing number of papers investigating C and H as possible light elements in the core, but the results are contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Using the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4 and Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3 and FeH4 are stable iron hydrides at these conditions. For Fe3C, the cementite structure (Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures found here. We found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable structures, in both compounds containing trivalent iron. The density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.percent (2.6-3.7 wt.percent) at relevant pressures and temperatures. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from the Birchs law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high, 17-22 mol.percent (0.4-0.5 wt.percent), which corresponds to the average atomic mass in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.
We explore whether the topology of energy landscapes in chemical systems obeys any rules and what these rules are. To answer this and related questions we use several tools: (i)Reduced energy surface and its density of states, (ii) descriptor of stru cture called fingerprint function, which can be represented as a one-dimensional function or a vector in abstract multidimensional space, (iii) definition of a distance between two structures enabling quantification of energy landscapes, (iv) definition of a degree of order of a structure, and (v) definitions of the quasi-entropy quantifying structural diversity. Our approach can be used for rationalizing large databases of crystal structures and for tuning computational algorithms for structure prediction. It enables quantitative and intuitive representations of energy landscapes and reappraisal of some of the traditional chemical notions and rules. Our analysis confirms the expectations that low-energy minima are clustered in compact regions of configuration space (funnels) and that chemical systems tend to have very few funnels, sometimes only one. This analysis can be applied to the physical properties of solids, opening new ways of discovering structure-property relations. We quantitatively demonstrate that crystals tend to adopt one of the few simplest structures consistent with their chemistry, providing a thermodynamic justification of Paulings fifth rule.
Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new element turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Borons complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.
The comment of Dubrovinskaia et al. is scientifically flawed. The high-pressure form of boron, discovered by Oganov et al., is indeed new and its bonding has a significant ionic character, as demonstrated in Ref. 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا