ترغب بنشر مسار تعليمي؟ اضغط هنا

We present preliminary results of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand -- for comparison reasons -- the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.
The TrES-2 system harbors one planet which was discovered with the transit technique. In this work we investigate the dynamical behavior of possible additional, lower-mass planets. We identify the regions where such planets can move on stable orbits and show how they depend on the initial eccentricity and inclination. We find, that there are stable regions inside and outside the orbit of TrES-2b where additional, smaller planets can move. We also show that those planets can have a large orbital inclination which makes a detection with the transit technique very difficult.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا