ترغب بنشر مسار تعليمي؟ اضغط هنا

Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage. However, they are usually applied directly in data space and often require thousands of network evaluations for sampling. Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space, relying on the variational autoencoder framework. Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space, resulting in fewer network evaluations and faster sampling. To enable training LSGMs end-to-end in a scalable and stable manner, we (i) introduce a new score-matching objective suitable to the LSGM setting, (ii) propose a novel parameterization of the score function that allows SGM to focus on the mismatch of the target distribution with respect to a simple Normal one, and (iii) analytically derive multiple techniques for variance reduction of the training objective. LSGM obtains a state-of-the-art FID score of 2.10 on CIFAR-10, outperforming all existing generative results on this dataset. On CelebA-HQ-256, LSGM is on a par with previous SGMs in sample quality while outperforming them in sampling time by two orders of magnitude. In modeling binary images, LSGM achieves state-of-the-art likelihood on the binarized OMNIGLOT dataset.
Training deep neural networks requires gradient estimation from data batches to update parameters. Gradients per parameter are averaged over a set of data and this has been presumed to be safe for privacy-preserving training in joint, collaborative, and federated learning applications. Prior work only showed the possibility of recovering input data given gradients under very restrictive conditions - a single input point, or a network with no non-linearities, or a small 32x32 px input batch. Therefore, averaging gradients over larger batches was thought to be safe. In this work, we introduce GradInversion, using which input images from a larger batch (8 - 48 images) can also be recovered for large networks such as ResNets (50 layers), on complex datasets such as ImageNet (1000 classes, 224x224 px). We formulate an optimization task that converts random noise into natural images, matching gradients while regularizing image fidelity. We also propose an algorithm for target class label recovery given gradients. We further propose a group consistency regularization framework, where multiple agents starting from different random seeds work together to find an enhanced reconstruction of original data batch. We show that gradients encode a surprisingly large amount of information, such that all the individual images can be recovered with high fidelity via GradInversion, even for complex datasets, deep networks, and large batch sizes.
Phrase grounding, the problem of associating image regions to caption words, is a crucial component of vision-language tasks. We show that phrase grounding can be learned by optimizing word-region attention to maximize a lower bound on mutual informa tion between images and caption words. Given pairs of images and captions, we maximize compatibility of the attention-weighted regions and the words in the corresponding caption, compared to non-corresponding pairs of images and captions. A key idea is to construct effective negative captions for learning through language model guided word substitutions. Training with our negatives yields a $sim10%$ absolute gain in accuracy over randomly-sampled negatives from the training data. Our weakly supervised phrase grounding model trained on COCO-Captions shows a healthy gain of $5.7%$ to achieve $76.7%$ accuracy on Flickr30K Entities benchmark.
Neural architecture search (NAS) aims to discover network architectures with desired properties such as high accuracy or low latency. Recently, differentiable NAS (DNAS) has demonstrated promising results while maintaining a search cost orders of mag nitude lower than reinforcement learning (RL) based NAS. However, DNAS models can only optimize differentiable loss functions in search, and they require an accurate differentiable approximation of non-differentiable criteria. In this work, we present UNAS, a unified framework for NAS, that encapsulates recent DNAS and RL-based approaches under one framework. Our framework brings the best of both worlds, and it enables us to search for architectures with both differentiable and non-differentiable criteria in one unified framework while maintaining a low search cost. Further, we introduce a new objective function for search based on the generalization gap that prevents the selection of architectures prone to overfitting. We present extensive experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets and we perform search in two fundamentally different search spaces. We show that UNAS obtains the state-of-the-art average accuracy on all three datasets when compared to the architectures searched in the DARTS space. Moreover, we show that UNAS can find an efficient and accurate architecture in the ProxylessNAS search space, that outperforms existing MobileNetV2 based architectures. The source code is available at https://github.com/NVlabs/unas .
Training of discrete latent variable models remains challenging because passing gradient information through discrete units is difficult. We propose a new class of smoothing transformations based on a mixture of two overlapping distributions, and sho w that the proposed transformation can be used for training binary latent models with either directed or undirected priors. We derive a new variational bound to efficiently train with Boltzmann machine priors. Using this bound, we develop DVAE++, a generative model with a global discrete prior and a hierarchy of convolutional continuous variables. Experiments on several benchmarks show that overlapping transformations outperform other recent continuous relaxations of discrete latent variables including Gumbel-Softmax (Maddison et al., 2016; Jang et al., 2016), and discrete variational autoencoders (Rolfe 2016).
We present a novel approach for discovering human interactions in videos. Activity understanding techniques usually require a large number of labeled examples, which are not available in many practical cases. Here, we focus on recovering semantically meaningful clusters of human-human and human-object interaction in an unsupervised fashion. A new iterative solution is introduced based on Maximum Margin Clustering (MMC), which also accepts user feedback to refine clusters. This is achieved by formulating the whole process as a unified constrained latent max-margin clustering problem. Extensive experiments have been carried out over three challenging datasets, Collective Activity, VIRAT, and UT-interaction. Empirical results demonstrate that the proposed algorithm can efficiently discover perfect semantic clusters of human interactions with only a small amount of labeling effort.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا