ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate a model system for inertial many-particle clustering, in which sub-millimeter objects are acoustically levitated in air. Driven by scattered sound, levitated grains self-assemble into a monolayer of particles, forming mesoscopic granul ar rafts with both an acoustic binding energy and a bending rigidity. Detuning the acoustic trap can give rise to stochastic forces and torques that impart angular momentum to levitated objects, activating soft modes in the rotating elastic membrane. As the angular momentum of a quasi-two-dimensional granular raft is increased, the raft deforms from a disk to an ellipse, eventually pinching off into multiple separate rafts, in a mechanism that resembles the break-up of a liquid drop. We extract the raft effective surface tension and bulk modulus, and show that acoustic forces give rise to elastic moduli that scale with the raft size. We also show that the raft size controls the microstructural basis of plastic deformation, resulting in a transition from fracture to ductile failure.
Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However, solid objects are generally hyperstatic (or overconstrained). Here, we show how symmetries may be applied to generate topological soft modes even in overconstrained, rigid systems. To do so, we consider non-Hermitian topology based on non-square matrices, and design a hyperstatic material in which low-energy modes protected by topology and symmetry appear at interfaces. Our approach presents a novel way of generating softness in robust scale-free architectures suitable for miniaturization to the nanoscale.
The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well-understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness l ies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids: the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere-substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings unleash a powerful and widely applicable strategy for injecting mechanical energy into soft materials, with relevance to fields ranging from soft robotics and metamaterials to microfluidics and active matter.
Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $kappa <0$ is highly degenerate, and we use analytical techniques and simulation to explore its finite temperature properties. We show that a unique rhombic ground state is entropically favored at nonzero temperature at $kappa <0$ and that the existence of a subextensive number of floppy modes whose frequencies vanish at $kappa = 0$ leads to singular contributions to the free energy that render the square-to-rhombic transition first order and lead to power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا