ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical instability at finite temperature

167   0   0.0 ( 0 )
 نشر من قبل Xiaoming Mao
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $kappa <0$ is highly degenerate, and we use analytical techniques and simulation to explore its finite temperature properties. We show that a unique rhombic ground state is entropically favored at nonzero temperature at $kappa <0$ and that the existence of a subextensive number of floppy modes whose frequencies vanish at $kappa = 0$ leads to singular contributions to the free energy that render the square-to-rhombic transition first order and lead to power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.



قيم البحث

اقرأ أيضاً

As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this Letter, we show that higher dimensional fracton models can support a fracton topological order below a nonzero critical temperature $T_c$. Focusing on a typical 4D X-cube model, we show that there is a finite critical temperature $T_c$ by analyzing its free energy from duality. We also obtained the expectation value of the t Hooft loops in the 4D X-cube model, which directly shows a confinement-deconfinement phase transition at finite temperature. This finite-temperature phase transition can be understood as spontaneously breaking the $mathbb{Z}_2$ one-form subsystem symmetry. Moreover, we propose a new no-go theorem for finite-temperature quantum fracton topological order.
Motivated by the recent experiments on Bose-Einstein mixtures with tunable interactions we study repulsive weakly interacting Bose mixtures at finite temperature. We obtain phase diagrams using Hartree-Fock theory which are directly applicable to exp erimentally trapped systems. Almost all features of the diagrams can be characterized using simple physical insights. Our work reveals two surprising effects which are dissimilar to a system at zero temperature. First of all, no pure phases exist, that is, at each point in the trap, particles of both species are always present. Second, even for very weak interspecies repulsion when full mixing is expected, condensate particles of both species may be present in a trap without them being mixed.
To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem ory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. Here we review the state-of-the-art developments in this field in an informative and pedagogical way. We give the main principles of self-correcting quantum memories and we analyze several milestone examples from the literature of two-, three- and higher-dimensional quantum memories.
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hy brid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates.
Folding mechanisms are zero elastic energy motions essential to the deployment of origami, linkages, reconfigurable metamaterials and robotic structures. In this paper, we determine the fate of folding mechanisms when such structures are miniaturized so that thermal fluctuations cannot be neglected. First, we identify geometric and topological design strategies aimed at minimizing undesired thermal energy barriers that generically obstruct kinematic mechanisms at the microscale. Our findings are illustrated in the context of a quasi one-dimensional linkage structure that harbors a topologically protected mechanism. However, thermal fluctuations can also be exploited to deliberately lock a reconfigurable metamaterial into a fully expanded configuration, a process reminiscent of order by disorder transitions in magnetic systems. We demonstrate that this effect leads certain topological mechanical structures to exhibit an abrupt change in the pressure -- a bulk signature of the underlying topological invariant at finite temperature. We conclude with a discussion of anharmonic corrections and potential applications of our work to the the engineering of DNA origami devices and molecular robots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا