ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present a general scheme for how to relate differential equations for the recurrence coefficients of semi-classical orthogonal polynomials to the Painleve equations using the geometric framework of Okamotos space of initial values. W e demonstrate this procedure in two examples. For semi-classical Laguerre polynomials appearing in [HC17], we show how the recurrence coefficients are connected to the fourth Painleve equation. For discrete orthogonal polynomials associated with the hypergeometric weight appearing in [FVA18] we discuss the relation of the recurrence coefficients to the sixth Painleve equation. In addition to demonstrating the general scheme, these results supplement previous studies [DFS20, HFC20], and we also discuss a number of related topics in the context of the geometric approach, such as Hamiltonian forms of the differential equations for the recurrence coefficients, Riccati solutions for special parameter values, and associated discrete Painleve equations.
It is well-known that differential Painleve equations can be written in a Hamiltonian form. However, a coordinate form of such representation is far from unique -- there are many very different Hamiltonians that result in the same differential Painle ve equation. In this paper we describe a systematic procedure of finding changes of coordinates transforming different Hamiltonian systems into some canonical form. Our approach is based on Sakais geometric theory of Painleve equations. We explain our approach using the fourth differential ${text{P}_{mathrm{IV}}}$ equation as an example, but it can be easily adapted to other Painleve equations as well.
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detail ed example of the appearance of discrete Painleve equations in the theory of orthogonal polynomials. On the other hand, it serves as a good illustration of the effectiveness of a recently proposed procedure on how to reduce such recurrences to some canonical discrete Painleve equations.
Over the last decade it has become clear that discrete Painleve equations appear in a wide range of important mathematical and physical problems. Thus, the question of recognizing a given non-autonomous recurrence as a discrete Painleve equation and determining its type according to Sakais classification scheme, understanding whether it is equivalent to some known (model) example, and especially finding an explicit change of coordinates transforming it to such an example, becomes one of the central ones. Fortunately, Sakais geometric theory provides an almost algorithmic procedure for answering this question. In this paper we illustrate this procedure by studying an example coming from the theory of discrete orthogonal polynomials. There are many connections between orthogonal polynomials and Painleve equations, both differential and discrete. In particular, often the coefficients of three-term recurrence relations for discrete orthogonal polynomials can be expressed in terms of solutions of discrete Painleve equations. In this work we study discrete orthogonal polynomials with general hypergeometric weight and show that their recurrence coefficients satisfy, after some change of variables, the standard discrete Painleve-V equation. We also provide an explicit change of variables transforming this equation to the standard form.
The goal of this paper is to investigate the missing part of the story about the relationship between the orthogonal polynomial ensembles and Painleve equations. Namely, we consider the $q$-Racah polynomial ensemble and show that the one-interval gap probabilities in this case can be expressed through a solution of the discrete $q$-P$left(E_7^{(1)}/A_{1}^{(1)}right)$ equation. Our approach also gives a new Lax pair for this equation. This Lax pair has an interesting additional involutive symmetry structure.
Although the theory of discrete Painleve (dP) equations is rather young, more and more examples of such equations appear in interesting and important applications. Thus, it is essential to be able to recognize these equations, to be able to identify their type, and to see where they belong in the classification scheme. The definite classification scheme for dP equations was proposed by H. Sakai, who used geometric ideas to identify 22 different classes of these equations. However, in a major contrast with the theory of ordinary differential Painleve equations, there are infinitely many non-equivalent discrete equations in each class. Thus, there is no general form for a dP equation in each class, although some nice canonical examples in each equation class are known. The main objective of this paper is to illustrate that, in addition to providing the classification scheme, the geometric ideas of Sakai give us a powerful tool to study dP equations. We consider a very complicated example of a dP equation that describes a simple Schlesinger transformation of a Fuchsian system and we show how this equation can be identified with a much simpler canonical example of the dP equation of the same type and moreover, we give an explicit change of coordinates transforming one equation into the other. Among our main tools are the birational representation of the affine Weyl symmetry group of the equation and the period map. Even though we focus on a concrete example, the techniques that we use are general and can be easily adapted to other examples.
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painleve equations. However, the dependence of this procedure on the choice of a par ticular elliptic fiber has not been sufficiently investigated. In this paper we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. %By choosing a particular Starting from a single autonomous mapping but varying the type of a chosen fiber, we obtain different types of discrete Painleve equations using this deautonomization procedure. We also introduce a technique for reconstructing a mapping from the knowledge of its induced action on the Picard group and some additional geometric data. This technique allows us to obtain factorized expressions of discrete Painleve equations, including the elliptic case. Further, by imposing certain restrictions on such non-autonomous mappings we obtain new and simple elliptic difference Painleve equations, including examples whose symmetry groups do not appear explicitly in Sakais classification.
We present two examples of reductions from the evolution equations describing discrete Schlesinger transformations of Fuchsian systems to difference Painleve equations: difference Painleve equation d-$Pleft({A}_{2}^{(1)*}right)$ with the symmetry gro up ${E}^{(1)}_{6}$ and difference Painleve equation d-$Pleft({A}_{1}^{(1)*}right)$ with the symmetry group ${E}^{(1)}_{7}$. In both cases we describe in detail how to compute their Okamoto space of the initial conditions and emphasize the role played by geometry in helping us to understand the structure of the reduction, a choice of a good coordinate system describing the equation, and how to compare it with other instances of equations of the same type.
106 - Anton Dzhamay 2013
We establish the Lagrangian nature of the discrete isospectral and isomonodromic dynamical systems corresponding to the re-factorization transformations of the rational matrix functions on the Riemann sphere. Specifically, in the isospectral case we generalize the Moser-Veselov approach to integrability of discrete systems via the re-factorization of matrix polynomials to a more general class of matrix rational functions that have a simple divisor and, in the quadratic case, explicitly write the Lagrangian function for such systems. Next we show that if we let certain parameters in this Lagrangian to be time-dependent, the resulting Euler-Lagrange equations describe the isomonodromic transformations of systems of linear difference equations. It is known that in some special cases such equations reduce to the difference Painleve equation. As an example, we show how to obtain the difference Painlev`e V equation in this way, and hence we establish that this equation can be written in the Lagrangian form.
127 - Anton Dzhamay 2013
We study relations between the eigenvectors of rational matrix functions on the Riemann sphere. Our main result is that for a subclass of functions that are products of two elementary blocks it is possible to represent these relations in a combinator ial-geometric way using a diagram of a cube. In this representation, vertices of the cube represent eigenvectors, edges are labeled by differences of locations of zeroes and poles of the determinant of our matrix function, and each face corresponds to a particular choice of a coordinate system on the space of such functions. Moreover, for each face this labeling encodes, in a neat and efficient way, a generating function for the expressions of the remaining four eigenvectors that label the opposing face of the cube in terms of the coordinates represented by the chosen face. The main motivation behind this work is that when our matrix is a Lax matrix of a discrete integrable system, such generating functions can be interpreted as Lagrangians of the system, and a choice of a particular face corresponds to a choice of the direction of the motion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا