ترغب بنشر مسار تعليمي؟ اضغط هنا

By means of a semi-analytic model of galaxy formation, we show how the local observed relation between age and galactic stellar mass is affected by assuming a DM power spectrum with a small-scale cutoff. We compare results obtained by means of both a Lambda-cold dark matter (LambdaCDM) and a Lambda-warm dark matter (LambdaWDM) power spectrum - suppressed with respect to the LambdaCDM at scales below ~ 1 Mpc. We show that, within a LWDM cosmology with a thermal relic particle mass of 0.75 keV, both the mass-weighted and the luminosity-weighted age-mass relations are steeper than those obtained within a LambdaCDM universe, in better agreement with the observed relations. Moreover, both the observed differential and cumulative age distributions are better reproduced within a LambdaWDM cosmology. In such a scenario, star formation appears globally delayed with respect to the LambdaCDM, in particular in low-mass galaxies. The difficulty of obtaining a full agreement between model results and observations is to be ascribed to our present poor understanding of baryonic physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا