ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select 122,967 galaxies with 0.43 < z < 0.7 into a Blue sample and 131,969 into a Red sample based on k+e corrected (to z=0.55) r-i colours and i band magnitudes. The samples are chosen to each contain more than 100,000 galaxies, have similar redshift distributions, and maximize the difference in clustering amplitude. The Red sample has a 40% larger bias than the Blue (b_Red/b_Blue = 1.39+-0.04), implying the Red galaxies occupy dark matter halos with an average mass that is 0.5 log Mo greater. Spherically averaged measurements of the correlation function, xi 0, and the power spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of both samples. Using xi 0, we obtain distance scales, relative to our reference LCDM cosmology, of 1.010+-0.027 for the Red sample and 1.005+-0.031 for the Blue. After applying reconstruction, these measurements improve to 1.013+/-0.020 for the Red sample and 1.008+-0.026 for the Blue. For each sample, measurements of xi 0 and the second multipole moment, xi 2, of the anisotropic correlation function are used to determine the rate of structure growth, parameterized by fsigma 8. We find fsigma 8,Red = 0.511+-0.083, fsigma 8,Blue = 0.509+/-0.085, and fsigma 8,Cross = 0.423+-0.061 (from the cross-correlation between the Red and Blue samples). We use the covariance between the bias and growth measurements obtained from each sample and their cross-correlation to produce an optimally-combined measurement of fsigma 8,comb = 0.443+-0.055. In no instance do we detect significant differences in distance scale or structure growth measurements obtained from the Blue and Red samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا