ترغب بنشر مسار تعليمي؟ اضغط هنا

The Clustering of Galaxies in the SDSS-III DR10 Baryon Oscillation Spectroscopic Survey: No Detectable Colour Dependence of Distance Scale or Growth Rate Measurements

85   0   0.0 ( 0 )
 نشر من قبل Ashley Ross Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select 122,967 galaxies with 0.43 < z < 0.7 into a Blue sample and 131,969 into a Red sample based on k+e corrected (to z=0.55) r-i colours and i band magnitudes. The samples are chosen to each contain more than 100,000 galaxies, have similar redshift distributions, and maximize the difference in clustering amplitude. The Red sample has a 40% larger bias than the Blue (b_Red/b_Blue = 1.39+-0.04), implying the Red galaxies occupy dark matter halos with an average mass that is 0.5 log Mo greater. Spherically averaged measurements of the correlation function, xi 0, and the power spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of both samples. Using xi 0, we obtain distance scales, relative to our reference LCDM cosmology, of 1.010+-0.027 for the Red sample and 1.005+-0.031 for the Blue. After applying reconstruction, these measurements improve to 1.013+/-0.020 for the Red sample and 1.008+-0.026 for the Blue. For each sample, measurements of xi 0 and the second multipole moment, xi 2, of the anisotropic correlation function are used to determine the rate of structure growth, parameterized by fsigma 8. We find fsigma 8,Red = 0.511+-0.083, fsigma 8,Blue = 0.509+/-0.085, and fsigma 8,Cross = 0.423+-0.061 (from the cross-correlation between the Red and Blue samples). We use the covariance between the bias and growth measurements obtained from each sample and their cross-correlation to produce an optimally-combined measurement of fsigma 8,comb = 0.443+-0.055. In no instance do we detect significant differences in distance scale or structure growth measurements obtained from the Blue and Red samples.



قيم البحث

اقرأ أيضاً

We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.
We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 < z < 0.7 spanni ng 3,275 square degrees. Both peculiar velocities and errors in the assumed redshift-distance relation (Alcock-Paczynski effect) generate correlations between clustering amplitude and orientation with respect to the line-of-sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broadband shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a LCDM expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of DA, H, and growth all separately require dark energy at z > 0.57, and when combined imply Omega_{Lambda} = 0.74 +/- 0.016, independent of the Universes evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.
We investigate the luminosity and colour dependence of clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Tenth Data Release. The halo occupation distribution framework is adopted to model the pro jected two-point correlation function measurements on small and intermediate scales (from $0.02$ to $60,h^{-1}{rm {Mpc}}$) and to interpret the observed trends and infer the connection of galaxies to dark matter halos. We find that luminous red galaxies reside in massive halos of mass $M{sim}10^{13}$--$10^{14},h^{-1}{rm M_odot}$ and more luminous galaxies are more clustered and hosted by more massive halos. The strong small-scale clustering requires a fraction of these galaxies to be satellites in massive halos, with the fraction at the level of 5--8 per cent and decreasing with luminosity. The characteristic mass of a halo hosting on average one satellite galaxy above a luminosity threshold is about a factor $8.7$ larger than that of a halo hosting a central galaxy above the same threshold. At a fixed luminosity, progressively redder galaxies are more strongly clustered on small scales, which can be explained by having a larger fraction of these galaxies in the form of satellites in massive halos. Our clustering measurements on scales below $0.4,h^{-1}{rm {Mpc}}$ allow us to study the small-scale spatial distribution of satellites inside halos. While the clustering of luminosity-threshold samples can be well described by a Navarro-Frenk-White (NFW) profile, that of the reddest galaxies prefers a steeper or more concentrated profile. Finally, we also use galaxy samples of constant number density at different redshifts to study the evolution of luminous galaxies, and find the clustering to be consistent with passive evolution in the redshift range of $0.5 lesssim z lesssim 0.6$.
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e. g. above 50 $h^{-1}$Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift $z=0.59$, to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, the normalized growth rate $f(z)sigma_8(z)$, and the physical matter density $Omega_mh^2$. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements ${D_A(0.59)r_{s,fid}/r_s$ $rm Mpc$, $H(0.59)r_s/r_{s,fid}$ $km s^{-1} Mpc^{-1}$, $f(0.59)sigma_8(0.59)$, $Omega_m h^2}$ = ${1427pm26$, $97.3pm3.3$, $0.488 pm 0.060$, $0.135pm0.016}$, where $r_s$ is the comoving sound horizon at the drag epoch and $r_{s,fid}=147.66$ Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, $w$, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, $Omega_k$, is 0.3 per cent. We do not find deviation from flat $Lambda$CDM.
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا