ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate, $W$, is studied in a complete phase diagram of a 2D superconductor above the upper critical field line $H_{c2}(T)$ . In the region of relatively high temperatures and low magnetic fields, the relaxation rate $W$ is determined by two competing effects. The first one is its decrease in result of suppression of quasi-particle density of states (DOS) due to formation of fluctuation Cooper pairs (FCP). The second one is a specific, purely quantum, relaxation process of the Maki-Thompson (MT) type, which for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length $l_{phi }$ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal metal - type-II superconductor transition. The character of fluctuations changes along the line $H_{c2}$ from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCP in fields comparable to $H_{c2}$. We find that below the well-defined temperature $T^*_0approx 0.6T_{c0}$, the MT process becomes ineffective even in absence of intrinsic pair-breaking. The small scale of FCP rotations ($xi_{xy}$) in so high fields impedes formation of long (<$l_{phi }$) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasi-particle DOS, analogously to the Abrikosov vortex phase below the $H_{c2}$ line.
Thermoelectric energy conversion is a direct but low-efficiency process, which precludes the development of long-awaited wide-scale applications. As a breakthrough permitting a drastic performance increase is seemingly out of reach, we fully reconsid er the problem of thermoelectric coupling enhancement. The corner stone of our approach is the observation that heat engines are particularly efficient when their operation involves a phase transition of their working fluid. We derive and compute the thermoelastic coefficients of various systems, including Bose and Fermi gases, and fluctuation Cooper pairs. Combination of these coefficients yields the definition of the thermodynamic figure of merit, the divergence of which at $finite$ temperature indicates that conditions are fulfilled for the best possible use of the thermoelectric working fluid. Here, this situation occurs in the fluctuation regime only, as a consequence of the increased compressibility of the working fluid near its phase transition. Our results and analysis clearly show that efforts in the field of thermoelectricity can now be productively directed towards systems where electronic phase transitions are possible.
A simple model describing the Nernst-Ettingshausen effect (NEE) in two-component electronic liquids is formulated. The examples considered include graphite, where the normal and Dirac fermions coexist, superconductor in fluctuating regime, with coexi sting Cooper pairs and normal electrons, and the inter-stellar plasma of electrons and protons. We give a general expression for the Nernst constant and show that the origin of a giant NEE is in the strong dependence of the chemical potential on temperature in all cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا