ترغب بنشر مسار تعليمي؟ اضغط هنا

We measure the mass functions for generically red and blue galaxies, using a z < 0.12 sample of log M* > 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing meas urements stems from how red and blue galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterise the two populations without having to specify a priori which galaxies are red and blue. Our results then provide the means to derive objective operational definitions for the terms red and blue, which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that: 1.) after accounting for dust, the stellar colours of blue galaxies do not depend strongly on mass; 2.) the tight, flat dead sequence does not extend much below log M* ~ 10.5; instead, 3.) the stellar colours of red galaxies vary rather strongly with mass, such that lower mass red galaxies have bluer stellar populations; 4.) below log M* ~ 9.3, the red population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, 5.) it is hard to meaningfully constrain the shape, including the possibility of an upturn, of the red galaxy mass function below log M* ~ 9. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.
We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS survey to study systematic effects in extracting properties of stellar populations (age, dust, metallicity and SFR) from pixel colors using the pixel-z method. The systematics st udied include the effect of the input stellar population synthesis model, passband limitations and differences between individual SED fits to pixels and global SED-fitting to a galaxys colors. We find that with optical-only colors, the systematic errors due to differences among the models are well constrained. The largest impact on the age and SFR e-folding time estimates in the pixels arises from differences between the Maraston models and the Bruzual&Charlot models, when optical colors are used. This results in systematic differences larger than the 2{sigma} uncertainties in over 10 percent of all pixels in the galaxy sample. The effect of restricting the available passbands is more severe. In 26 percent of pixels in the full sample, passband limitations result in systematic biases in the age estimates which are larger than the 2{sigma} uncertainties. Systematic effects from model differences are reexamined using Near-IR colors for a subsample of 46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR colors span the rest frame UV-optical SED, and the use of different models does not significantly bias the estimates of the stellar population parameters compared to using optical-only colors. We then illustrate how pixel-z can be applied robustly to make detailed studies of substructure in high redshift galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the distribution of these properties within subcomponents such as spiral arms and clumps. Finally, we show preliminary results from the CANDELS survey illustrating how the new HST/WFC3 data can be exploited to probe substructure in z~1-3 galaxies.
We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spect ral slope, $beta$, the Balmer decrement, and the far infrared (IR) to $150,$nm far ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the $beta$ parameter, and that $beta$ may be poorly constrained when derived from only two broad passbands in the UV. We also emphasise that FUV derived SFRs, corrected for dust obscuration using $beta$, will be overestimated unless a modified relation between $beta$ and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR to FUV luminosity ratio and $beta$ parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on $beta$ for high redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations.
The local stellar mass density is observed to be significantly lower than the value obtained from integrating the cosmic star formation history (SFH), assuming that all the stars formed with a Salpeter initial mass function (IMF). Even other favoured IMFs, more successful in reconciling the observed $z=0$ stellar mass density with that inferred from the SFH, have difficulties in reproducing the stellar mass density observed at higher redshift. In this study we investigate to what extent this discrepancy can be alleviated for any universal power-law IMF. We find that an IMF with a high-mass slope shallower (2.15) than the Salpeter slope (2.35) reconciles the observed stellar mass density with the cosmic star formation history, but only at low redshifts. At higher redshifts $z>0.5$ we find that observed stellar mass densities are systematically lower than predicted from the cosmic star formation history, for any universal power-law IMF.
We present the results of a study of a sample of 375 Extremely Red Galaxies (ERGs) in the Phoenix Deep Survey, 273 of which constitute a subsample which is 80% complete to K_s = 18.5 over an area of 1160 arcmin^2. The angular correlation function for ERGs is estimated, and the association of ERGs with faint radio sources explored. We find tentative evidence that ERGs and faint radio sources are associated at z > 0.5. A new overdensity-mapping algorithm has been used to characterize the ERG distribution, and identify a number of cluster candidates, including a likely cluster containing ERGs at 0.5 < z < 1. Our algorithm is also used in an attempt to probe the environments in which faint radio sources and ERGs are associated. We find limited evidence that the I - K_s > 4 criterion is more efficient than R - K_s > 5 at selecting dusty star-forming galaxies, rather than passively evolving ERGs.
182 - Igor Drozdovsky 2008
Given the many recent advances in our understanding of the star formation history (SFH) of the Local Group and other nearby galaxies, and in the evolution of star formation with redshift, we present a new comparison of the comoving space density of t he star formation rate as a function of look-back time for the Local and Distant Universe. We update the Local SFH derived from the analysis of resolved stellar populations (``fossil records) in individual nearby galaxies, based on our own estimations as well as available in the literature. While the preliminary comparison of SFHs is found to be broadly consistent, some discrepancies still remain, including an excess of the Local SFR density in the most recent epoch.
We present a compilation of measurements of the stellar mass density as a function of redshift. Using this stellar mass history we obtain a star formation history and compare it to the instantaneous star formation history. For z<0.7 there is good agr eement between the two star formation histories. At higher redshifts the instantaneous indicators suggest star formation rates larger than that implied by the evolution of the stellar mass density. This discrepancy peaks at z=3 where instantaneous indicators suggest a star formation rate around 0.6 dex higher than those of the best fit to the stellar mass history. We discuss a variety of explanations for this inconsistency, such as inaccurate dust extinction corrections, incorrect measurements of stellar masses and a possible evolution of the stellar initial mass function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا