ترغب بنشر مسار تعليمي؟ اضغط هنا

Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics

129   0   0.0 ( 0 )
 نشر من قبل Niraj Welikala
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS survey to study systematic effects in extracting properties of stellar populations (age, dust, metallicity and SFR) from pixel colors using the pixel-z method. The systematics studied include the effect of the input stellar population synthesis model, passband limitations and differences between individual SED fits to pixels and global SED-fitting to a galaxys colors. We find that with optical-only colors, the systematic errors due to differences among the models are well constrained. The largest impact on the age and SFR e-folding time estimates in the pixels arises from differences between the Maraston models and the Bruzual&Charlot models, when optical colors are used. This results in systematic differences larger than the 2{sigma} uncertainties in over 10 percent of all pixels in the galaxy sample. The effect of restricting the available passbands is more severe. In 26 percent of pixels in the full sample, passband limitations result in systematic biases in the age estimates which are larger than the 2{sigma} uncertainties. Systematic effects from model differences are reexamined using Near-IR colors for a subsample of 46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR colors span the rest frame UV-optical SED, and the use of different models does not significantly bias the estimates of the stellar population parameters compared to using optical-only colors. We then illustrate how pixel-z can be applied robustly to make detailed studies of substructure in high redshift galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the distribution of these properties within subcomponents such as spiral arms and clumps. Finally, we show preliminary results from the CANDELS survey illustrating how the new HST/WFC3 data can be exploited to probe substructure in z~1-3 galaxies.



قيم البحث

اقرأ أيضاً

151 - C. Knobel , S. J. Lilly , K. Kovac 2012
We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z ~ 0.8 correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We sho w that, at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar when the universe was about a half its present age, as it is today.
We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host g alaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
We present the first results of a project, LSD, aimed at obtaining spatially-resolved, near-infrared spectroscopy of a complete sample of Lyman-Break Galaxies at z~3. Deep observations with adaptive optics resulted in the detection of the main optica l lines, such as [OII], Hbeta and [OIII], which are used to study sizes, SFRs, morphologies, gas-phase metallicities, gas fractions and effective yields. Optical, near-IR and Spitzer/IRAC photometry is used to measure stellar mass. We obtain that morphologies are usually complex, with the presence of several peaks of emissions and companions that are not detected in broad-band images. Typical metallicities are 10-50% solar, with a strong evolution of the mass-metallicity relation from lower redshifts. Stellar masses, gas fraction, and evolutionary stages vary significantly among the galaxies, with less massive galaxies showing larger fractions of gas. In contrast with observations in the local universe, effective yields decrease with stellar mass and reach solar values at the low-mass end of the sample. This effect can be reproduced by gas infall with rates of the order of the SFRs. Outflows are present but are not needed to explain the mass-metallicity relation. We conclude that a large fraction of these galaxies are actively creating stars after major episodes of gas infall or merging.
87 - Casey Papovich 2003
The integrated colors of distant galaxies provide a means for interpreting the properties of their stellar content. Here, we use rest-frame UV-to-optical colors to constrain the spectral-energy distributions and stellar populations of color-selected, B-dropout galaxies at z ~ 4 in the Great Observatories Origins Deep Survey. We combine the ACS data with ground-based near-infrared images, which extend the coverage of galaxies at z ~ 4 to the rest-frame B-band. We observe a color-magnitude trend in the rest-frame m(UV) - B versus B diagram for the z ~ 4 galaxies that has a fairly well-defined blue-envelope, and is strikingly similar to that of color-selected, U-dropout galaxies at z ~ 3. We also find that although the co-moving luminosity density at rest-frame UV wavelengths (1600 Angstroms) is roughly comparable at z ~ 3 and z ~ 4, the luminosity density at rest-frame optical wavelengths increases by about one-third from z ~ 4 to z ~ 3. Although the star-formation histories of individual galaxies may involve complex and stochastic events, the evolution in the global luminosity density of the UV-bright galaxy population corresponds to an average star-formation history with a star-formation rate that is constant or increasing over these redshifts. This suggests that the evolution in the luminosity density corresponds to an increase in the stellar-mass density of more than 33%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا