ترغب بنشر مسار تعليمي؟ اضغط هنا

PSR J2032+4127 is a gamma-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of two. We present evidence that this is due to it s motion as a member of a highly-eccentric binary system with a 15-solar-mass Be star, MT91~213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91~213, and hence the pulsar, lie in the Cyg~OB2 stellar association, which is at a distance of only 1.4-1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20-30 years. The next periastron is well-constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.
The 30-Hz rotation rate of the Crab pulsar has been monitored at Jodrell Bank Observatory since 1984 and by other observatories before then. Since 1968, the rotation rate has decreased by about $0.5$,Hz, interrupted only by sporadic and small spin up events (glitches). 24 of these events have been observed, including a significant concentration of 15 occurring over an interval of 11 years following MJD 50000. The monotonic decrease of the slowdown rate is partially reversed at glitches. This reversal comprises a step and an asymptotic exponential with a 320-day time constant, as determined in the three best-isolated glitches. The cumulative effect of all glitches is to reduce the decrease in slowdown rate by about 6%. Overall, a low mean braking index of $2.342(1)$ is measured for the whole period, compared with values close to $2.5$ in intervals between glitches. Removing the effects of individual glitches reveals an underlying power law slowdown with the same braking index of 2.5. We interpret this value in terms of a braking torque due to a dipolar magnetic field in which the inclination angle between the dipole and rotation axes is increasing. There may also be further effects due to a monopolar particle wind or infalling supernova debris.
Pulsars are highly-magnetised rotating neutron stars and are well-known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsa r has shown a steady increase in the separation of the main pulse and interpulse components at 0.62$^{rm o}pm$0.03$^{rm o}$ per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving towards the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.
60 - Andrew Lyne 2012
It has recently been shown that there is a close correlation between the slowdown rates and the pulse shapes of six pulsars, and between the slowdown rates and the flux density of three others. This indicates that these phenomena are related by chang es in the current flows in the pulsar magnetospheres. In this paper we review the observational status of these studies, which have now been extended to a total of 16 pulsars having correlated slowdown and pulse emission properties. The changes seem to be due to sudden switching between just two discrete magnetospheric states in the well-known processes of mode-changing and pulse nulling. We also address how widespread these phenomena are in the wider pulsar population.
Pulsars are famed for their rotational clock-like stability and their highly-repeatable pulse shapes. However, it has long been known that there are unexplained deviations (often termed timing noise) from the rate at which we predict these clocks sho uld run. We show that timing behaviour often results from typically two different spin-down rates. Pulsars switch abruptly between these states, often quasi-periodically, leading to the observed spin-down patterns. We show that for six pulsars the timing noise is correlated with changes in the pulse shape. Many pulsar phenomena including mode-changing, nulling, intermittency, pulse shape variability and timing noise are therefore linked and caused by changes in the pulsars magnetosphere. We consider the possibility that high-precision monitoring of pulse profiles could lead to the formation of highly-stable pulsar clocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا