ترغب بنشر مسار تعليمي؟ اضغط هنا

New connections between static elastic cloaking, low frequency elastic wave scattering and neutral inclusions are established in the context of two dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core-shell composite cylinder as a neutral elastic inclusion. Two types of neutral inclusion are distinguished, textit{weak} and textit{strong} with the former equivalent to low frequency transparency {and the classical Christensen and Lo generalised self-consistent result for in-plane shear from 1979. Our introduction of the textit{strong neutral inclusion} is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed unphysical materials.} The relationships between low frequency transparency, static cloaking and neutral inclusions provide the material designer with options for achieving elastic cloaking in the quasi-static limit.
Materials with properties that are modulated in time are known to display wave phenomena showing energy increasing with time, with the rate mediated by the modulation. Until now there has been no accounting for material dissipation, which clearly cou nteracts energy growth. This paper provides an exact expression for the amplitude of elastic or acoustic waves propagating in lossy materials with properties that are periodically modulated in time. It is found that these materials can support a special propagation regime in which waves travel at constant amplitude, with temporal modulation compensating for the normal energy dissipation. We derive a general condition under which amplification due to time-dependent properties offsets the material dissipation. This identity relates band-gap properties associated with the temporal modulation and the average of the viscosity coefficient, thereby providing a simple recipe for the design of loss-compensated mechanical metamaterials.
The acoustic cloaking theory of Norris (2008) permits considerable freedom in choosing the transformation function f from physical to virtual space. The standard process for defining cloak materials is to first define f and then evaluate whether the materials are practically realizable. In this paper, this process is inverted by defining desirable material properties and then deriving the appropriate transformations which guarantee the cloaking effect. Transformations are derived which result in acoustic cloaks with special properties such as 1) constant density 2) constant radial stiffness 3) constant tangential stiffness 4) power-law density 5) power-law radial stiffness 6) power-law tangential stiffness 7) minimal elastic anisotropy.
It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane elastic waves. This approach appears to negate the r equirement for special cloaking metamaterials with inhomogeneous and anisotropic material properties in this case. These properties are induced naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking since dispersive effects due to metamaterial microstructure will not arise.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا