ﻻ يوجد ملخص باللغة العربية
The acoustic cloaking theory of Norris (2008) permits considerable freedom in choosing the transformation function f from physical to virtual space. The standard process for defining cloak materials is to first define f and then evaluate whether the materials are practically realizable. In this paper, this process is inverted by defining desirable material properties and then deriving the appropriate transformations which guarantee the cloaking effect. Transformations are derived which result in acoustic cloaks with special properties such as 1) constant density 2) constant radial stiffness 3) constant tangential stiffness 4) power-law density 5) power-law radial stiffness 6) power-law tangential stiffness 7) minimal elastic anisotropy.
Conventional sonic crystal (SC) devices designed for acoustic imaging can focus acoustic waves from an input source into only one image but not multi-images. Furthermore the output position of formed image cannot be designed at will. In this paper, w
A central ingredient of cloaking-by-mapping is the diffeomorphisn which transforms an annulus with a small hole into an annulus with a finite size hole, while being the identity on the outer boundary of the annulus. The resulting meta-material is ani
This is a survey of approximate cloaking using transformation optics for acoustic and electromagnetic waves.
We consider the propagation of acoustic waves in a 2D waveguide unbounded in one direction and containing a compact obstacle. The wavenumber is fixed so that only one mode can propagate. The goal of this work is to propose a method to cloak the obsta
A birational transformation f: P^n --> Z, where Z is a nonsingular variety of Picard number 1, is called a special birational transformation of type (a, b) if f is given by a linear system of degree a, its inverse is given by a linear system of degre