ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate in a microscopical transport model the evolution of conical structures originating from the supersonic projectile moving through the matter of ultrarelativistic particles. Using different scenarios for the interaction between projectil e and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Furthermore, the two-particle correlations for different viscosities are extracted from the numerical calculations and we compare them to an analytical approximation. In addition, by adjusting he cross section we investigate the influence of the viscosity to the structure of Mach cones.
We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC en ergies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا