ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic electron scattering is applied to investigate the impact of potassium intercalation on the charge carrier plasmon energy and dispersion in the charge-density wave (CDW) bearing compound 2H-tantalum-diselenide. We observe an unususal doping dependence of the plasmon dispersion, which even changes sign upon alkali addition. In contrast to the continous energy shift of the plasmon position upon doping at lowest momentum transfer, its dispersion changes in a rather discontinuous manner. We argue that the observed dynamics can only be explained in a picture, where complex phenomena are taken into account including the suppression of the CDW upon doping as well as the interplay of the CDW and the plasma resonance.
We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a*,b* reciprocal lattice plane. The lowest singlet exciton can move coh erently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast to the generic behavior observed in simple metals as well as the related system 2H-NbS2, which does not exhibit charge order. We present a semiclassical Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a charge ordered state is thus reflected in the properties of the collective excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا