ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive the hard functions for all 2->2 processes in massless QCD up to next-to-next-to-leading order (NNLO) in the strong coupling constant. By employing the known one- and two-loop helicity amplitudes for these processes, we obtain analytic expre ssions for the ultraviolet and infrared finite, minimally subtracted hard functions, which are matrices in color space. These hard functions will be useful in carrying out higher-order resummations in processes such as dijet and highly energetic top-quark pair production by means of soft-collinear effective theory methods.
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribut ion and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quark p_T is much larger than its mass. In particular, we derive a novel factorization formula valid in the small-mass and soft limits of the differential partonic cross section. This provides a framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. The result involves five distinct one-scale functions, three of which arise through the subfactorization of soft real radiation in the small-mass limit. We list the NNLO corrections to each of these functions, building on results in the literature by performing a new calculation of a soft function involving four light-like Wilson lines to this order. We thus obtain a nearly complete description of the small-mass limit of the differential partonic cross section at NNLO near threshold, missing only terms involving closed top-quark loops in the virtual corrections.
We obtain a soft plus virtual approximation to the NNLO QCD contributions to the top-pair invariant mass distribution at hadron colliders. It is valid up to corrections of order m_t^2/M^2, with M the pair invariant mass. This is currently the most co mplete QCD calculation for a differential cross section in top-quark pair production, and is useful for describing the high invariant mass region characteristic of boosted top quarks. We use our results to construct an improved NNLO approximation for the pair invariant mass distribution and compare it with previous, less complete approximations based on logarithmic terms from NNLL soft-gluon resummation alone. We find that the new NNLO approximation produces moderate enhancements of the differential cross section compared to previous ones, the effect being slightly more important at low values of invariant mass than at high ones. On the other hand, at high values of invariant mass the new NNLO corrections are dominated by even higher-order effects included in NNLL soft-gluon resummation, reaffirming the need for resummation in describing the highly boosted regime.
At high values of the pair invariant mass the differential cross section for top-quark pair production at hadron colliders factorizes into soft, hard, and fragmentation functions. In this paper we calculate the next-to-next-to-leading-order (NNLO) co rrections to the soft function appearing in this factorization formula, thus providing the final piece needed to evaluate at NNLO the differential cross section in the virtual plus soft approximation in the large invariant-mass limit. Technically, this amounts to evaluating the vacuum expectation value of a soft Wilson loop operator built out of light-like Wilson lines for each of the four partons participating in the hard scattering process, with a certain constraint on the total energy of the soft radiation. Our result turns out to be surprisingly simple, because in the sum of all graphs the three and four parton contributions multiply color structures whose coefficients are governed by the non-abelian exponentiation theorem.
We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropr iate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass.
The infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension Gamma, which is a matrix in color space and depends on the momenta and masses of the external partons. It has recently been shown that in cases where the re are at least two massive partons involved in the scattering process, starting at two-loop order Gamma receives contributions involving color and momentum correlations between three (and more) partons. The three-parton correlations can be described by two universal functions F_1 and f_2. In this paper these functions are calculated at two-loop order in closed analytic form and their properties are studied in detail. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, both functions are O(1) and even diverge logarithmically near the threshold for pair production of two heavy particles. As an application, we calculate the infrared poles in the q qbar --> t tbar and g g --> t tbar scattering amplitudes at two-loop order.
We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, they are unsuppressed and diverge logarithmically near the threshold for pair production of two heavy particles. As an application, we calculate the two-loop anomalous-dimension matrix for q q_bar --> t t_bar near threshold and show that it is not diagonal in the s-channel singlet-octet basis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا